Sa-m commited on
Commit
dfa47a7
·
1 Parent(s): 56ce0c0

Upload autoanchor.py

Browse files
Files changed (1) hide show
  1. utils/autoanchor.py +160 -0
utils/autoanchor.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Auto-anchor utils
2
+
3
+ import numpy as np
4
+ import torch
5
+ import yaml
6
+ from scipy.cluster.vq import kmeans
7
+ from tqdm import tqdm
8
+
9
+ from utils.general import colorstr
10
+
11
+
12
+ def check_anchor_order(m):
13
+ # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
15
+ da = a[-1] - a[0] # delta a
16
+ ds = m.stride[-1] - m.stride[0] # delta s
17
+ if da.sign() != ds.sign(): # same order
18
+ print('Reversing anchor order')
19
+ m.anchors[:] = m.anchors.flip(0)
20
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
21
+
22
+
23
+ def check_anchors(dataset, model, thr=4.0, imgsz=640):
24
+ # Check anchor fit to data, recompute if necessary
25
+ prefix = colorstr('autoanchor: ')
26
+ print(f'\n{prefix}Analyzing anchors... ', end='')
27
+ m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28
+ shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29
+ scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30
+ wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31
+
32
+ def metric(k): # compute metric
33
+ r = wh[:, None] / k[None]
34
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35
+ best = x.max(1)[0] # best_x
36
+ aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37
+ bpr = (best > 1. / thr).float().mean() # best possible recall
38
+ return bpr, aat
39
+
40
+ anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41
+ bpr, aat = metric(anchors)
42
+ print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43
+ if bpr < 0.98: # threshold to recompute
44
+ print('. Attempting to improve anchors, please wait...')
45
+ na = m.anchor_grid.numel() // 2 # number of anchors
46
+ try:
47
+ anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48
+ except Exception as e:
49
+ print(f'{prefix}ERROR: {e}')
50
+ new_bpr = metric(anchors)[0]
51
+ if new_bpr > bpr: # replace anchors
52
+ anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53
+ m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54
+ check_anchor_order(m)
55
+ m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
56
+ print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57
+ else:
58
+ print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59
+ print('') # newline
60
+
61
+
62
+ def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63
+ """ Creates kmeans-evolved anchors from training dataset
64
+
65
+ Arguments:
66
+ path: path to dataset *.yaml, or a loaded dataset
67
+ n: number of anchors
68
+ img_size: image size used for training
69
+ thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70
+ gen: generations to evolve anchors using genetic algorithm
71
+ verbose: print all results
72
+
73
+ Return:
74
+ k: kmeans evolved anchors
75
+
76
+ Usage:
77
+ from utils.autoanchor import *; _ = kmean_anchors()
78
+ """
79
+ thr = 1. / thr
80
+ prefix = colorstr('autoanchor: ')
81
+
82
+ def metric(k, wh): # compute metrics
83
+ r = wh[:, None] / k[None]
84
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85
+ # x = wh_iou(wh, torch.tensor(k)) # iou metric
86
+ return x, x.max(1)[0] # x, best_x
87
+
88
+ def anchor_fitness(k): # mutation fitness
89
+ _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90
+ return (best * (best > thr).float()).mean() # fitness
91
+
92
+ def print_results(k):
93
+ k = k[np.argsort(k.prod(1))] # sort small to large
94
+ x, best = metric(k, wh0)
95
+ bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96
+ print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97
+ print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98
+ f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99
+ for i, x in enumerate(k):
100
+ print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101
+ return k
102
+
103
+ if isinstance(path, str): # *.yaml file
104
+ with open(path) as f:
105
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106
+ from utils.datasets import LoadImagesAndLabels
107
+ dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108
+ else:
109
+ dataset = path # dataset
110
+
111
+ # Get label wh
112
+ shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113
+ wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114
+
115
+ # Filter
116
+ i = (wh0 < 3.0).any(1).sum()
117
+ if i:
118
+ print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119
+ wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120
+ # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121
+
122
+ # Kmeans calculation
123
+ print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124
+ s = wh.std(0) # sigmas for whitening
125
+ k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126
+ assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127
+ k *= s
128
+ wh = torch.tensor(wh, dtype=torch.float32) # filtered
129
+ wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130
+ k = print_results(k)
131
+
132
+ # Plot
133
+ # k, d = [None] * 20, [None] * 20
134
+ # for i in tqdm(range(1, 21)):
135
+ # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137
+ # ax = ax.ravel()
138
+ # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140
+ # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141
+ # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142
+ # fig.savefig('wh.png', dpi=200)
143
+
144
+ # Evolve
145
+ npr = np.random
146
+ f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147
+ pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148
+ for _ in pbar:
149
+ v = np.ones(sh)
150
+ while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151
+ v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152
+ kg = (k.copy() * v).clip(min=2.0)
153
+ fg = anchor_fitness(kg)
154
+ if fg > f:
155
+ f, k = fg, kg.copy()
156
+ pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157
+ if verbose:
158
+ print_results(k)
159
+
160
+ return print_results(k)