Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
""" | |
# MANIFESTO ANALYSIS | |
## IMPORTING LIBRARIES | |
""" | |
# Commented out IPython magic to ensure Python compatibility. | |
# %%capture | |
# !pip install tika | |
# !pip install clean-text | |
# !pip install gradio | |
# Commented out IPython magic to ensure Python compatibility. | |
import io | |
import random | |
import matplotlib.pyplot as plt | |
import nltk | |
from nltk.tokenize import word_tokenize,sent_tokenize | |
from nltk.corpus import stopwords | |
from nltk.stem.porter import PorterStemmer | |
from nltk.stem import WordNetLemmatizer | |
import tika | |
from tika import parser | |
from nltk.corpus import stopwords | |
from nltk.tokenize import word_tokenize | |
from nltk.probability import FreqDist | |
from cleantext import clean | |
import nltk.corpus | |
from nltk.text import Text | |
from io import StringIO | |
import sys | |
import re | |
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator | |
from textblob import TextBlob | |
from PIL import Image | |
import os | |
import gradio as gr | |
from zipfile import ZipFile | |
#import jdk | |
#jdk.install('11') | |
nltk.download('stopwords') | |
nltk.download('punkt') | |
nltk.download('wordnet') | |
nltk.download('averaged_perceptron_tagger') | |
nltk.download('words') | |
os.system("web: java $JAVA_OPTS -jar tika-server-1.0.6.jar --host=0.0.0.0 --port=$PORT") | |
"""## PARSING FILES""" | |
def Parsing(parsed_text): | |
parsed_text=parsed_text.name | |
raw_party =parser.from_file(parsed_text) | |
# parser.parse1(option='all',urlOrPath=parsed_text) | |
# from_buffer(parsed_text) | |
# from_file(parsed_text) | |
raw_party = raw_party['content'] | |
return clean(raw_party) | |
#Added more stopwords to avoid irrelevant terms | |
stop_words = set(stopwords.words('english')) | |
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2') | |
"""## PREPROCESSING""" | |
def clean_text(text): | |
''' | |
The function which returns clean text | |
''' | |
text = text.encode("ascii", errors="ignore").decode("ascii") # remove non-asciicharacters | |
text=unidecode.unidecode(text)# diacritics remove | |
text=contractions.fix(text) # contraction fix | |
text = re.sub(r"\n", " ", text) | |
text = re.sub(r"\n\n", " ", text) | |
text = re.sub(r"\t", " ", text) | |
text = re.sub(r"/ ", " ", text) | |
text = text.strip(" ") | |
text = re.sub(" +", " ", text).strip() # get rid of multiple spaces and replace with a single | |
text = [word for word in text.split() if word not in stop_words] | |
text = ' '.join(text) | |
return text | |
# text_Party=clean_text(raw_party) | |
def Preprocess(textParty): | |
''' | |
Removing special characters extra spaces | |
''' | |
text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty) | |
#Removing all stop words | |
pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*') | |
text2Party = pattern.sub('', text1Party) | |
# fdist_cong = FreqDist(word_tokens_cong) | |
return text2Party | |
# Using Concordance,you can see each time a word is used, along with its | |
# immediate context. It can give you a peek into how a word is being used | |
# at the sentence level and what words are used with it. | |
def concordance(text_Party,strng): | |
word_tokens_party = word_tokenize(text_Party) | |
moby = Text(word_tokens_party) | |
resultList = [] | |
for i in range(0,1): | |
save_stdout = sys.stdout | |
result = StringIO() | |
sys.stdout = result | |
moby.concordance(strng,lines=10,width=82) | |
sys.stdout = save_stdout | |
s=result.getvalue().splitlines() | |
return result.getvalue() | |
def normalize(d, target=1.0): | |
raw = sum(d.values()) | |
factor = target/raw | |
return {key:value*factor for key,value in d.items()} | |
def fDistance(text2Party): | |
''' | |
most frequent words search | |
''' | |
word_tokens_party = word_tokenize(text2Party) #Tokenizing | |
fdistance = FreqDist(word_tokens_party).most_common(10) | |
mem={} | |
for x in fdistance: | |
mem[x[0]]=x[1] | |
return normalize(mem) | |
def fDistancePlot(text2Party,plotN=20): | |
''' | |
most frequent words visualisation | |
''' | |
word_tokens_party = word_tokenize(text2Party) #Tokenizing | |
fdistance = FreqDist(word_tokens_party) | |
return fdistance.plot(20) | |
## UI INTERFACE | |
def analysis(Manifesto,Search): | |
raw_party = Parsing(Manifesto) | |
text_Party=clean_text(raw_party) | |
text_Party= Preprocess(text_Party) | |
fdist_Party=fDistance(text_Party) | |
searchRes=concordance(text_Party,Search) | |
searChRes=clean(searchRes) | |
# searChRes=searchRes.replace(Search,f"\u0332{Search}\u0332 ") | |
searChRes=searchRes.replace(Search,"\u0332".join(Search)) | |
return fdist_Party,searChRes | |
Search_txt=gr.inputs.Textbox() | |
filePdf = gr.inputs.File() | |
text = gr.outputs.Textbox(label='SEARCHED OUTPUT') | |
mfw=gr.outputs.Label(label="Most Relevant topics in manifesto") | |
gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[mfw,text], title='Manifesto Analysis').launch(debug=False,share=True) | |