Spaces:
Running
Running
saylee-m
commited on
Commit
·
a106da8
1
Parent(s):
656f678
add
Browse files- app.py +214 -4
- images/apple-10k-form.png +0 -0
- images/sample_vendor_contract.png +0 -0
- requirements.txt +4 -0
app.py
CHANGED
@@ -1,7 +1,217 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from PIL import Image
|
3 |
import gradio as gr
|
4 |
+
import re
|
5 |
+
import torch
|
6 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
7 |
+
from transformers import AutoProcessor, PaliGemmaProcessor, PaliGemmaForConditionalGeneration
|
8 |
+
from transformers import AutoModelForVision2Seq
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
+
import base64
|
11 |
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
13 |
|
14 |
+
model_choices = [
|
15 |
+
"idefics2",
|
16 |
+
"paligemma",
|
17 |
+
"donut"
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def load_donut_model():
|
23 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
24 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
25 |
+
model.to(device)
|
26 |
+
return model, processor
|
27 |
+
|
28 |
+
def load_paligemma_docvqa():
|
29 |
+
model_id = "google/paligemma-3b-ft-docvqa-896"
|
30 |
+
# model_id = "google/paligemma-3b-mix-448"
|
31 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
32 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
33 |
+
model.to(device)
|
34 |
+
return model, processor
|
35 |
+
|
36 |
+
def load_idefics_docvqa():
|
37 |
+
model_id = "HuggingFaceM4/idefics2-8b"
|
38 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
39 |
+
model = AutoModelForVision2Seq.from_pretrained(model_id)
|
40 |
+
model.to(device)
|
41 |
+
return model, processor
|
42 |
+
|
43 |
+
def load_models():
|
44 |
+
# load donut
|
45 |
+
donut_model, donut_processor = load_donut_model()
|
46 |
+
print("donut downloaded")
|
47 |
+
#load paligemma
|
48 |
+
pg_model, pg_processor = load_paligemma_docvqa()
|
49 |
+
print("paligemma downloaded")
|
50 |
+
|
51 |
+
return {"donut":[donut_model, donut_processor],
|
52 |
+
# "idefics": [idf_model, idf_processor],
|
53 |
+
"paligemma": [pg_model, pg_processor]}
|
54 |
+
|
55 |
+
# loaded_models = load_models()
|
56 |
+
|
57 |
+
def base64_encoded_image(image_array):
|
58 |
+
im = Image.fromarray(image_array)
|
59 |
+
buffered = BytesIO()
|
60 |
+
im.save(buffered, format="PNG")
|
61 |
+
image_bytes = buffered.getvalue()
|
62 |
+
image_base64 = base64.b64encode(image_bytes).decode('ascii')
|
63 |
+
return image_base64
|
64 |
+
|
65 |
+
|
66 |
+
def inference_calling_idefics(image_array, question):
|
67 |
+
model_id = "HuggingFaceM4/idefics2-8b"
|
68 |
+
client = InferenceClient(model=model_id)
|
69 |
+
image_base64 = base64_encoded_image(image_array)
|
70 |
+
image_info = f"data:image/png;base64,{image_base64}"
|
71 |
+
prompt = f"![]({image_info}){question}\n\n"
|
72 |
+
response = client.text_generation(prompt)
|
73 |
+
return response
|
74 |
+
|
75 |
+
|
76 |
+
def process_document_donut(image_array, question):
|
77 |
+
model, processor = loaded_models.get("donut")
|
78 |
+
|
79 |
+
# prepare encoder inputs
|
80 |
+
pixel_values = processor(image_array, return_tensors="pt").pixel_values
|
81 |
+
|
82 |
+
# prepare decoder inputs
|
83 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
84 |
+
prompt = task_prompt.replace("{user_input}", question)
|
85 |
+
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
86 |
+
|
87 |
+
# generate answer
|
88 |
+
outputs = model.generate(
|
89 |
+
pixel_values.to(device),
|
90 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
91 |
+
max_length=model.decoder.config.max_position_embeddings,
|
92 |
+
early_stopping=True,
|
93 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
94 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
95 |
+
use_cache=True,
|
96 |
+
num_beams=1,
|
97 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
98 |
+
return_dict_in_generate=True,
|
99 |
+
)
|
100 |
+
|
101 |
+
# postprocess
|
102 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
103 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
104 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
105 |
+
op = processor.token2json(sequence)
|
106 |
+
op = op.get("answer", str(op))
|
107 |
+
|
108 |
+
return op
|
109 |
+
|
110 |
+
def process_document_pg(image_array, question):
|
111 |
+
model, processor = loaded_models.get("paligemma")
|
112 |
+
|
113 |
+
inputs = processor(images=image_array, text=question, return_tensors="pt").to(device)
|
114 |
+
predictions = model.generate(**inputs, max_new_tokens=100)
|
115 |
+
return processor.batch_decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
116 |
+
|
117 |
+
def process_document_idf(image_array, question):
|
118 |
+
model, processor = loaded_models.get("idefics")
|
119 |
+
|
120 |
+
inputs = processor(images=image_array, text=question, return_tensors="pt") #.to(device)
|
121 |
+
predictions = model.generate(**inputs, max_new_tokens=100)
|
122 |
+
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
123 |
+
|
124 |
+
|
125 |
+
def generate_answer_donut(image_array, question):
|
126 |
+
try:
|
127 |
+
answer = process_document_donut(image_array, question)
|
128 |
+
print(answer)
|
129 |
+
return answer
|
130 |
+
except Exception as e:
|
131 |
+
print(e)
|
132 |
+
gr.Warning("There is some issue, please try again later.")
|
133 |
+
return "sorry :("
|
134 |
+
|
135 |
+
def generate_answer_idefics(image_array, question):
|
136 |
+
try:
|
137 |
+
# answer = process_document_idf(image_array, question)
|
138 |
+
answer = inference_calling_idefics(image_array, question)
|
139 |
+
print(answer)
|
140 |
+
return answer
|
141 |
+
except Exception as e:
|
142 |
+
print(e)
|
143 |
+
gr.Warning("There is some issue, please try again later.")
|
144 |
+
return "sorry :("
|
145 |
+
|
146 |
+
def generate_answer_paligemma(image_array, question):
|
147 |
+
try:
|
148 |
+
answer = process_document_pg(image_array, question)
|
149 |
+
print(answer)
|
150 |
+
return answer
|
151 |
+
except Exception as e:
|
152 |
+
print(e)
|
153 |
+
gr.Warning("There is some issue, please try again later.")
|
154 |
+
return "sorry :("
|
155 |
+
|
156 |
+
def generate_answers(image_path, question, selected_model=model_choices[0]):
|
157 |
+
try:
|
158 |
+
if selected_model == "donut":
|
159 |
+
answer = generate_answer_donut(image_path, question)
|
160 |
+
elif selected_model == "paligemma":
|
161 |
+
answer = generate_answer_paligemma(image_path, question)
|
162 |
+
else:
|
163 |
+
answer = generate_answer_idefics(image_path, question)
|
164 |
+
|
165 |
+
return [answer] #[donut_answer, pg_answer, idf_answer]
|
166 |
+
except Exception as e:
|
167 |
+
print(e)
|
168 |
+
gr.Warning("There is some issue, please try again later.")
|
169 |
+
return ["sorry :("]
|
170 |
+
|
171 |
+
|
172 |
+
def greet(name, shame, game):
|
173 |
+
return "Hello " + shame + "!!"
|
174 |
+
|
175 |
+
INTRO_TEXT = """## VQA demo\n\n
|
176 |
+
VQA task models comparison
|
177 |
+
This space is to compare multiple models on visual document question answering. \n\n
|
178 |
+
**Note: As the app is running on CPU currently, you might get error if you run multiple models back to back. Please reload the app to get the output.
|
179 |
+
"""
|
180 |
+
|
181 |
+
with gr.Blocks(css="style.css") as demo:
|
182 |
+
gr.Markdown(INTRO_TEXT)
|
183 |
+
# with gr.Tab("Text Generation"):
|
184 |
+
with gr.Column():
|
185 |
+
image = gr.Image(label="Input Image")
|
186 |
+
question = gr.Text(label="Question")
|
187 |
+
selected_model = gr.Radio(model_choices, label="Model", info="Select the model you want to run")
|
188 |
+
|
189 |
+
outputs_answer = gr.Text(label="Answer generated by the selected model")
|
190 |
+
run_button = gr.Button()
|
191 |
+
|
192 |
+
inputs = [
|
193 |
+
image,
|
194 |
+
question,
|
195 |
+
selected_model
|
196 |
+
]
|
197 |
+
outputs = [
|
198 |
+
outputs_answer
|
199 |
+
]
|
200 |
+
run_button.click(
|
201 |
+
fn=generate_answers,
|
202 |
+
inputs=inputs,
|
203 |
+
outputs=outputs,
|
204 |
+
)
|
205 |
+
|
206 |
+
examples = [["images/sample_vendor_contract.png", "Who is agreement between?"],
|
207 |
+
["images/apple-10k-form.png", "What are EMEA revenues in 2017?"],
|
208 |
+
["images/bel-infographic.png", "What is total turnover?"],
|
209 |
+
]
|
210 |
+
gr.Examples(
|
211 |
+
examples=examples,
|
212 |
+
inputs=inputs,
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
demo.queue(max_size=10).launch(debug=True)
|
images/apple-10k-form.png
ADDED
images/sample_vendor_contract.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
sentencepiece
|