Safwanahmad619 commited on
Commit
9fc95ea
·
verified ·
1 Parent(s): 9e5a4f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -170
app.py CHANGED
@@ -1,173 +1,3 @@
1
- # import os
2
- # import gradio as gr
3
- # import whisper
4
- # from gtts import gTTS
5
- # import io
6
- # from groq import Groq
7
-
8
- # # Initialize the Groq client
9
- # groq_api_key = os.getenv('GROQ_API_KEY')
10
- # client = Groq(api_key=groq_api_key)
11
-
12
- # # Load the Whisper model
13
- # model = whisper.load_model("base") # You can choose other models like "small", "medium", "large"
14
-
15
- # def process_audio(file_path):
16
- # try:
17
- # # Load the audio file
18
- # audio = whisper.load_audio(file_path)
19
-
20
- # # Transcribe the audio using Whisper
21
- # result = model.transcribe(audio)
22
- # text = result["text"]
23
-
24
- # # Generate a response using Groq
25
- # chat_completion = client.chat.completions.create(
26
- # messages=[{"role": "user", "content": text}],
27
- # model="llama3-8b-8192", # Replace with the correct model if necessary
28
- # )
29
-
30
- # # Access the response using dot notation
31
- # response_message = chat_completion.choices[0].message.content.strip()
32
-
33
- # # Convert the response text to speech
34
- # tts = gTTS(response_message)
35
- # response_audio_io = io.BytesIO()
36
- # tts.write_to_fp(response_audio_io) # Save the audio to the BytesIO object
37
- # response_audio_io.seek(0)
38
-
39
- # # Save audio to a file to ensure it's generated correctly
40
- # with open("response.mp3", "wb") as audio_file:
41
- # audio_file.write(response_audio_io.getvalue())
42
-
43
- # # Return the response text and the path to the saved audio file
44
- # return response_message, "response.mp3"
45
-
46
- # except Exception as e:
47
- # return f"An error occurred: {e}", None
48
-
49
- # iface = gr.Interface(
50
- # fn=process_audio,
51
- # inputs=gr.Audio(type="filepath"), # Use type="filepath"
52
- # outputs=[gr.Textbox(label="Response Text"), gr.Audio(label="Response Audio")],
53
- # live=True
54
- # )
55
-
56
- # # iface.launch()
57
- # import os
58
- # import gradio as gr
59
- # import whisper
60
- # from gtts import gTTS
61
- # from anthropic import Anthropic # Import the Anthropic client
62
- # import io # Import io for BytesIO
63
-
64
- # # Get the Anthropic API key from environment variables
65
- # ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
66
- # if not ANTHROPIC_API_KEY:
67
- # raise ValueError("ANTHROPIC_API_KEY environment variable is not set.")
68
- # client = Anthropic(api_key=ANTHROPIC_API_KEY) # Initialize the Anthropic client
69
-
70
- # # Load Whisper model
71
- # model = whisper.load_model("base") # You can also use "small", "medium", "large"
72
-
73
- # def chatbot(audio=None):
74
- # try:
75
- # if audio is None:
76
- # return "No input detected. Please provide an audio input.", None
77
-
78
- # # Transcribe the audio input using Whisper
79
- # transcription = model.transcribe(audio)
80
- # user_input = transcription.get("text", "")
81
-
82
- # # Generate a response using Anthropic API
83
- # chat_completion = client.completions.create(
84
- # model="claude-v1", # Specify the model
85
- # prompt=user_input, # Provide the user input as the prompt
86
- # max_tokens_to_sample=100, # Specify the maximum tokens to sample
87
- # )
88
- # response_text = chat_completion['completion']
89
-
90
- # # Convert the response text to speech using gTTS
91
- # tts = gTTS(text=response_text, lang='en')
92
- # response_audio_io = io.BytesIO() # Create a BytesIO object
93
- # tts.save(response_audio_io) # Save the audio to the BytesIO object
94
- # response_audio_io.seek(0) # Rewind the BytesIO object
95
-
96
- # return response_text, response_audio_io
97
-
98
- # except Exception as e:
99
- # return f"An error occurred: {e}", None
100
-
101
- # def clear_inputs():
102
- # return None, None, None
103
-
104
- # # Create a custom interface
105
- # def build_interface():
106
- # with gr.Blocks(css="""
107
- # .block-title {
108
- # text-align: center;
109
- # color: white;
110
- # background-color: #4CAF50;
111
- # padding: 10px;
112
- # border-radius: 8px;
113
- # }
114
- # .gradio-row {
115
- # background-color: #f9f9f9;
116
- # border-radius: 8px;
117
- # padding: 20px;
118
- # margin: 10px;
119
- # box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.1);
120
- # }
121
- # .gradio-column {
122
- # padding: 10px;
123
- # }
124
- # .gradio-button {
125
- # background-color: #ff6347 !important;
126
- # color: white !important;
127
- # border-radius: 8px !important;
128
- # padding: 10px 20px !important;
129
- # font-size: 16px !important;
130
- # border: none !important;
131
- # cursor: pointer !important;
132
- # box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.2) !important;
133
- # transition: background-color 0.3s ease !important;
134
- # }
135
- # .gradio-button:hover {
136
- # background-color: #e5533d !important;
137
- # }
138
- # """) as demo:
139
- # gr.Markdown(
140
- # """
141
- # <h1 class="block-title">Voice-to-Voice AI Chatbot</h1>
142
- # """
143
- # )
144
- # with gr.Row(elem_classes="gradio-row"):
145
- # with gr.Column(elem_classes="gradio-column", scale=1):
146
- # audio_input = gr.Audio(type="filepath", label="Record Your Voice")
147
- # with gr.Column(elem_classes="gradio-column", scale=2):
148
- # chatbot_output_text = gr.Textbox(label="Chatbot Response")
149
- # chatbot_output_audio = gr.Audio(label="Audio Response")
150
-
151
- # clear_button = gr.Button("Clear", elem_classes="gradio-button")
152
-
153
- # clear_button.click(
154
- # fn=clear_inputs,
155
- # outputs=[audio_input, chatbot_output_text, chatbot_output_audio]
156
- # )
157
-
158
- # audio_input.change(
159
- # fn=chatbot,
160
- # inputs=[audio_input],
161
- # outputs=[chatbot_output_text, chatbot_output_audio]
162
- # )
163
-
164
- # return demo
165
-
166
- # # Launch the interface
167
- # if __name__ == "__main__":
168
- # interface = build_interface()
169
- # interface.launch()
170
-
171
  import gradio as gr
172
  import whisper
173
  from gtts import gTTS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import whisper
3
  from gtts import gTTS