Spaces:
Runtime error
Runtime error
#Importing all the necessary packages | |
import gradio as gr | |
import torch, librosa, torchaudio | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
from pyctcdecode import build_ctcdecoder | |
# Define ASR MODEL | |
class Speech2Text: | |
def __init__(self, model_name='masoudmzb/wav2vec2-xlsr-multilingual-53-fa'): | |
self.model = Wav2Vec2ForCTC.from_pretrained(model_name).eval() | |
self.processor = Wav2Vec2Processor.from_pretrained(model_name) | |
self.vocab = list(self.processor.tokenizer.get_vocab().keys()) | |
self.decoder = build_ctcdecoder(self.vocab, kenlm_model_path='kenlm.scorer') | |
def wav2feature(self, path): | |
speech_array, sampling_rate = torchaudio.load(path) | |
speech_array = librosa.resample(speech_array.squeeze().numpy(), sampling_rate, self.processor.feature_extractor.sampling_rate) | |
return self.processor(speech_array, return_tensors="pt", sampling_rate=self.processor.feature_extractor.sampling_rate) | |
def feature2logits(self, features): | |
with torch.no_grad(): | |
return self.model(features.input_values[0]).logits.numpy()[0] | |
def __call__(self, path): | |
logits = self.feature2logits(self.wav2feature(path)) | |
return self.decoder.decode(logits) | |
# Create an instance | |
s2t = Speech2Text() | |
gr.Interface(lambda path: s2t(path), | |
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record Your Beautiful Persian Voice"), | |
outputs = gr.outputs.Textbox(label="Output Text"), | |
title="Persian ASR using Wav2Vec 2.0 & N-gram LM", | |
description = "This is a Persian Speech to Text", theme="huggingface").launch() |