|
import gradio as gr |
|
import spaces |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer |
|
from qwen_vl_utils import process_vision_info |
|
import torch |
|
from PIL import Image |
|
import subprocess |
|
import numpy as np |
|
import os |
|
from threading import Thread |
|
import uuid |
|
import io |
|
|
|
|
|
MODEL_ID = "Sakalti/qwen2.5" |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
MODEL_ID, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 |
|
).to("cuda").eval() |
|
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
|
|
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)" |
|
|
|
image_extensions = Image.registered_extensions() |
|
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp") |
|
|
|
|
|
def identify_and_save_blob(blob_path): |
|
"""Identifies if the blob is an image or video and saves it accordingly.""" |
|
try: |
|
with open(blob_path, 'rb') as file: |
|
blob_content = file.read() |
|
|
|
|
|
try: |
|
Image.open(io.BytesIO(blob_content)).verify() |
|
extension = ".png" |
|
media_type = "image" |
|
except (IOError, SyntaxError): |
|
|
|
extension = ".mp4" |
|
media_type = "video" |
|
|
|
|
|
filename = f"temp_{uuid.uuid4()}_media{extension}" |
|
with open(filename, "wb") as f: |
|
f.write(blob_content) |
|
|
|
return filename, media_type |
|
|
|
except FileNotFoundError: |
|
raise ValueError(f"The file {blob_path} was not found.") |
|
except Exception as e: |
|
raise ValueError(f"An error occurred while processing the file: {e}") |
|
|
|
|
|
@spaces.GPU |
|
def qwen_inference(media_input, text_input=None): |
|
if isinstance(media_input, str): |
|
media_path = media_input |
|
if media_path.endswith(tuple([i for i, f in image_extensions.items()])): |
|
media_type = "image" |
|
elif media_path.endswith(video_extensions): |
|
media_type = "video" |
|
else: |
|
try: |
|
media_path, media_type = identify_and_save_blob(media_input) |
|
print(media_path, media_type) |
|
except Exception as e: |
|
print(e) |
|
raise ValueError( |
|
"Unsupported media type. Please upload an image or video." |
|
) |
|
|
|
|
|
print(media_path) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": media_type, |
|
media_type: media_path, |
|
**({"fps": 8.0} if media_type == "video" else {}), |
|
}, |
|
{"type": "text", "text": text_input}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
).to("cuda") |
|
|
|
streamer = TextIteratorStreamer( |
|
processor, skip_prompt=True, **{"skip_special_tokens": True} |
|
) |
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
yield buffer |
|
|
|
css = """ |
|
#output { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Tab(label="Image/Video Input"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_media = gr.File( |
|
label="Upload Image or Video", type="filepath" |
|
) |
|
text_input = gr.Textbox(label="Question") |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Output Text") |
|
|
|
submit_btn.click( |
|
qwen_inference, [input_media, text_input], [output_text] |
|
) |
|
|
|
demo.launch(debug=True) |