Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.preprocessing import MinMaxScaler
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
# Load the trained model
|
8 |
+
with open('knn_model.pkl', 'rb') as file:
|
9 |
+
kn_class = pickle.load(file)
|
10 |
+
|
11 |
+
# Load the fitted MinMaxScaler
|
12 |
+
with open('scaler.pkl', 'rb') as file:
|
13 |
+
scaler = pickle.load(file)
|
14 |
+
|
15 |
+
def predict_fraud(cc_num, gender, lat, long, city_pop, unix_time, amount):
|
16 |
+
# Handle categorical feature 'Gender'
|
17 |
+
gender = 1 if gender == 'M' else 0
|
18 |
+
|
19 |
+
# Scale the amount feature
|
20 |
+
amount_scaled = scaler.transform([[amount]])[0][0]
|
21 |
+
|
22 |
+
# Create input dataframe for the model
|
23 |
+
input_data = pd.DataFrame({
|
24 |
+
'cc_num': [cc_num],
|
25 |
+
'Gender': [gender],
|
26 |
+
'lat': [lat],
|
27 |
+
'long': [long],
|
28 |
+
'city_pop': [city_pop],
|
29 |
+
'unix_time': [unix_time],
|
30 |
+
'Amount_Scaled': [amount_scaled]
|
31 |
+
})
|
32 |
+
|
33 |
+
# Predict using the loaded model
|
34 |
+
prediction = kn_class.predict(input_data)
|
35 |
+
|
36 |
+
# Return the result
|
37 |
+
return 'Fraudulent Transaction' if prediction[0] == 1 else 'Legitimate Transaction'
|
38 |
+
|
39 |
+
# Define examples, including one example of fraud
|
40 |
+
examples = [
|
41 |
+
[1234567890123456, 'M', 40.712776, -74.005974, 8398748, 1614575732, 100.0], # Legitimate transaction
|
42 |
+
[2345678901234567, 'F', 34.052235, -118.243683, 3990456, 1614575832, 200.0], # Legitimate transaction
|
43 |
+
[3456789012345678, 'M', 37.774929, -122.419416, 883305, 1614575932, 5000.0] # Fraudulent transaction
|
44 |
+
]
|
45 |
+
|
46 |
+
# Define Gradio interface
|
47 |
+
interface = gr.Interface(
|
48 |
+
fn=predict_fraud,
|
49 |
+
inputs=[
|
50 |
+
gr.Number(label="Credit Card Number"),
|
51 |
+
gr.Radio(['M', 'F'], label="Gender"),
|
52 |
+
gr.Number(label="Latitude"),
|
53 |
+
gr.Number(label="Longitude"),
|
54 |
+
gr.Number(label="City Population"),
|
55 |
+
gr.Number(label="Unix Time"),
|
56 |
+
gr.Number(label="Transaction Amount")
|
57 |
+
],
|
58 |
+
outputs="text",
|
59 |
+
title="Fraud Detection Application",
|
60 |
+
description="Enter the transaction details to predict if it is fraudulent or legitimate.",
|
61 |
+
examples=examples
|
62 |
+
)
|
63 |
+
|
64 |
+
# Launch the interface
|
65 |
+
interface.launch()
|