Spaces:
Sleeping
Sleeping
import io | |
import os | |
import math | |
from queue import Queue | |
from threading import Thread | |
from typing import Optional | |
import numpy as np | |
import spaces | |
import gradio as gr | |
import torch | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from pydub import AudioSegment | |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed | |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32 | |
repo_id = "ai4bharat/indic-parler-tts-pretrained" | |
jenny_repo_id = "ai4bharat/indic-parler-tts" | |
model = ParlerTTSForConditionalGeneration.from_pretrained( | |
repo_id, attn_implementation="eager", torch_dtype=torch_dtype, | |
).to(device) | |
jenny_model = ParlerTTSForConditionalGeneration.from_pretrained( | |
jenny_repo_id, attn_implementation="eager", torch_dtype=torch_dtype, | |
).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
SAMPLE_RATE = feature_extractor.sampling_rate | |
SEED = 42 | |
default_text = "Please surprise me and speak in whatever voice you enjoy." | |
examples = [ | |
[ | |
"मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.", | |
"Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"ಉದ್ಯಾನದಲ್ಲಿ ಮಕ್ಕಳ ಆಟವಾಡುತ್ತಿದ್ದಾರೆ ಮತ್ತು ಪಕ್ಷಿಗಳು ಚಿಲಿಪಿಲಿ ಮಾಡುತ್ತಿವೆ.", | |
"Suresh speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"বাচ্চারা বাগানে খেলছে আর পাখি কিচিরমিচির করছে।", | |
"Aditi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.", | |
"Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.", | |
"Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"This is the best time of my life, Bartley,' she said happily", | |
"A male speaker with a low-pitched voice speaks with a British accent at a fast pace in a small, confined space with very clear audio and an animated tone.", | |
3.0 | |
], | |
[ | |
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.", | |
"A female speaker with a slightly low-pitched, quite monotone voice speaks with an American accent at a slightly faster-than-average pace in a confined space with very clear audio.", | |
3.0 | |
], | |
[ | |
"बगीचे में बच्चे खेल रहे हैं और पक्षी चहचहा रहे हैं।", | |
"Rohit speaks with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.", | |
3.0 | |
], | |
[ | |
"കുട്ടികൾ പൂന്തോട്ടത്തിൽ കളിക്കുന്നു, പക്ഷികൾ ചിലയ്ക്കുന്നു.", | |
"Anjali speaks with a low-pitched voice delivering her words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.", | |
3.0 | |
], | |
[ | |
"குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.", | |
"Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.", | |
3.0 | |
] | |
] | |
jenny_examples = [ | |
[ | |
"मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.", | |
"Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"ಉದ್ಯಾನದಲ್ಲಿ ಮಕ್ಕಳ ಆಟವಾಡುತ್ತಿದ್ದಾರೆ ಮತ್ತು ಪಕ್ಷಿಗಳು ಚಿಲಿಪಿಲಿ ಮಾಡುತ್ತಿವೆ.", | |
"Suresh speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"বাচ্চারা বাগানে খেলছে আর পাখি কিচিরমিচির করছে।", | |
"Aditi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.", | |
"Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.", | |
"Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"This is the best time of my life, Bartley,' she said happily", | |
"A male speaker with a low-pitched voice speaks with a British accent at a fast pace in a small, confined space with very clear audio and an animated tone.", | |
3.0 | |
], | |
[ | |
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.", | |
"A female speaker with a slightly low-pitched, quite monotone voice speaks with an American accent at a slightly faster-than-average pace in a confined space with very clear audio.", | |
3.0 | |
], | |
[ | |
"बगीचे में बच्चे खेल रहे हैं और पक्षी चहचहा रहे हैं।", | |
"Rohit speaks with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.", | |
3.0 | |
], | |
[ | |
"കുട്ടികൾ പൂന്തോട്ടത്തിൽ കളിക്കുന്നു, പക്ഷികൾ ചിലയ്ക്കുന്നു.", | |
"Anjali speaks with a low-pitched voice delivering her words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.", | |
3.0 | |
], | |
[ | |
"குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.", | |
"Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.", | |
3.0 | |
] | |
] | |
def numpy_to_mp3(audio_array, sampling_rate): | |
# Normalize audio_array if it's floating-point | |
if np.issubdtype(audio_array.dtype, np.floating): | |
max_val = np.max(np.abs(audio_array)) | |
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range | |
audio_array = audio_array.astype(np.int16) | |
# Create an audio segment from the numpy array | |
audio_segment = AudioSegment( | |
audio_array.tobytes(), | |
frame_rate=sampling_rate, | |
sample_width=audio_array.dtype.itemsize, | |
channels=1 | |
) | |
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality | |
mp3_io = io.BytesIO() | |
audio_segment.export(mp3_io, format="mp3", bitrate="320k") | |
# Get the MP3 bytes | |
mp3_bytes = mp3_io.getvalue() | |
mp3_io.close() | |
return mp3_bytes | |
sampling_rate = model.audio_encoder.config.sampling_rate | |
frame_rate = model.audio_encoder.config.frame_rate | |
# @spaces.GPU | |
# def generate_base(text, description, play_steps_in_s=2.0): | |
# play_steps = int(frame_rate * play_steps_in_s) | |
# streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps) | |
# inputs = description_tokenizer(description, return_tensors="pt").to(device) | |
# prompt = tokenizer(text, return_tensors="pt").to(device) | |
# generation_kwargs = dict( | |
# input_ids=inputs.input_ids, | |
# prompt_input_ids=prompt.input_ids, | |
# streamer=streamer, | |
# do_sample=True, | |
# temperature=1.0, | |
# min_new_tokens=10, | |
# ) | |
# set_seed(SEED) | |
# thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
# thread.start() | |
# for new_audio in streamer: | |
# print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") | |
# yield numpy_to_mp3(new_audio, sampling_rate=sampling_rate) | |
def generate_base(text, description, play_steps_in_s=2.0): | |
# Initialize variables | |
play_steps = int(frame_rate * play_steps_in_s) | |
chunk_size = 15 # Process 10 words at a time | |
# Tokenize the full text and description | |
inputs = description_tokenizer(description, return_tensors="pt").to(device) | |
# Split text into chunks of approximately 10 words | |
words = text.split() | |
chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)] | |
all_audio = [] | |
# Process each chunk | |
for chunk in chunks: | |
# Tokenize the chunk | |
prompt = tokenizer(chunk, return_tensors="pt").to(device) | |
# Generate audio for the chunk | |
generation = model.generate( | |
input_ids=inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
prompt_input_ids=prompt.input_ids, | |
prompt_attention_mask=prompt.attention_mask, | |
do_sample=True, | |
# temperature=1.0, | |
# min_new_tokens=10, | |
return_dict_in_generate=True | |
) | |
# Extract audio from generation | |
if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'): | |
audio = generation.sequences[0, :generation.audios_length[0]] | |
audio_np = audio.to(torch.float32).cpu().numpy().squeeze() | |
if len(audio_np.shape) > 1: | |
audio_np = audio_np.flatten() | |
all_audio.append(audio_np) | |
# Combine all audio chunks | |
combined_audio = np.concatenate(all_audio) | |
# Convert to expected format and yield | |
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds") | |
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate) | |
# @spaces.GPU | |
# def generate_jenny(text, description, play_steps_in_s=2.0): | |
# play_steps = int(frame_rate * play_steps_in_s) | |
# streamer = ParlerTTSStreamer(jenny_model, device=device, play_steps=play_steps) | |
# inputs = description_tokenizer(description, return_tensors="pt").to(device) | |
# prompt = tokenizer(text, return_tensors="pt").to(device) | |
# generation_kwargs = dict( | |
# input_ids=inputs.input_ids, | |
# prompt_input_ids=prompt.input_ids, | |
# streamer=streamer, | |
# do_sample=True, | |
# temperature=1.0, | |
# min_new_tokens=10, | |
# ) | |
# set_seed(SEED) | |
# thread = Thread(target=jenny_model.generate, kwargs=generation_kwargs) | |
# thread.start() | |
# for new_audio in streamer: | |
# print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") | |
# yield sampling_rate, new_audio | |
def generate_jenny(text, description, play_steps_in_s=2.0): | |
# Initialize variables | |
play_steps = int(frame_rate * play_steps_in_s) | |
chunk_size = 15 # Process 10 words at a time | |
# Tokenize the full text and description | |
inputs = description_tokenizer(description, return_tensors="pt").to(device) | |
# Split text into chunks of approximately 10 words | |
words = text.split() | |
chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)] | |
all_audio = [] | |
# Process each chunk | |
for chunk in chunks: | |
# Tokenize the chunk | |
prompt = tokenizer(chunk, return_tensors="pt").to(device) | |
# Generate audio for the chunk | |
generation = jenny_model.generate( | |
input_ids=inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
prompt_input_ids=prompt.input_ids, | |
prompt_attention_mask=prompt.attention_mask, | |
do_sample=True, | |
# temperature=1.0, | |
# min_new_tokens=10, | |
return_dict_in_generate=True | |
) | |
# Extract audio from generation | |
if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'): | |
audio = generation.sequences[0, :generation.audios_length[0]] | |
audio_np = audio.to(torch.float32).cpu().numpy().squeeze() | |
if len(audio_np.shape) > 1: | |
audio_np = audio_np.flatten() | |
all_audio.append(audio_np) | |
# Combine all audio chunks | |
combined_audio = np.concatenate(all_audio) | |
# Convert to expected format and yield | |
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds") | |
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate) | |
css = """ | |
#share-btn-container { | |
display: flex; | |
padding-left: 0.5rem !important; | |
padding-right: 0.5rem !important; | |
background-color: #000000; | |
justify-content: center; | |
align-items: center; | |
border-radius: 9999px !important; | |
width: 13rem; | |
margin-top: 10px; | |
margin-left: auto; | |
flex: unset !important; | |
} | |
#share-btn { | |
all: initial; | |
color: #ffffff; | |
font-weight: 600; | |
cursor: pointer; | |
font-family: 'IBM Plex Sans', sans-serif; | |
margin-left: 0.5rem !important; | |
padding-top: 0.25rem !important; | |
padding-bottom: 0.25rem !important; | |
right:0; | |
} | |
#share-btn * { | |
all: unset !important; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
""" | |
with gr.Blocks(css=css) as block: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
Parler-TTS 🗣️ | |
</h1> | |
</div> | |
</div> | |
""" | |
) | |
gr.HTML( | |
f""" | |
<p><a href="https://github.com/huggingface/IndicParlerTTS">IndicParlerTTS</a> is a training and inference library for high-quality text-to-speech (TTS) models. This demonstration highlights the flexibility of the IndicParlerTTS model, which generates natural, expressive speech for over 22 Indian languages, using a simple text prompt to control features like speaker style, tone, pitch, pace, and more.</p> | |
<p>Tips for effective usage: | |
<ul> | |
<li>Use detailed captions to describe the speaker and desired characteristics (e.g., "Aditi speaks in a slightly expressive tone, with clear audio quality and a moderate pace.").</li> | |
<li>For best results, reference specific named speakers provided in the model card on the <a href="https://huggingface.co/IndicParlerTTS">model page</a>.</li> | |
<li>Include terms like <b>"very clear audio"</b> or <b>"slightly noisy audio"</b> to control the audio quality and background ambiance.</li> | |
<li>Punctuation can be used to shape prosody (e.g., commas add pauses for natural phrasing).</li> | |
<li>If unsure about what caption to use, you can start with: <b>"The speaker speaks naturally. The recording is very high quality with no background noise."</b></li> | |
</ul> | |
</p> | |
""" | |
) | |
with gr.Tab("Finetuned"): | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text", lines=2, value=jenny_examples[0][0], elem_id="input_text") | |
description = gr.Textbox(label="Description", lines=2, value=jenny_examples[0][1], elem_id="input_description") | |
play_seconds = gr.Slider(3.0, 7.0, value=jenny_examples[0][2], step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps") | |
run_button = gr.Button("Generate Audio", variant="primary") | |
with gr.Column(): | |
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", streaming=True, autoplay=True) | |
inputs = [input_text, description, play_seconds] | |
outputs = [audio_out] | |
gr.Examples(examples=jenny_examples, fn=generate_jenny, inputs=inputs, outputs=outputs, cache_examples=False) | |
run_button.click(fn=generate_jenny, inputs=inputs, outputs=outputs, queue=True) | |
with gr.Tab("Pretrained"): | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text") | |
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description") | |
play_seconds = gr.Slider(3.0, 7.0, value=3.0, step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps") | |
run_button = gr.Button("Generate Audio", variant="primary") | |
with gr.Column(): | |
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", streaming=True, autoplay=True) | |
inputs = [input_text, description, play_seconds] | |
outputs = [audio_out] | |
gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False) | |
run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True) | |
gr.HTML( | |
""" | |
If you'd like to learn more about how the model was trained or explore fine-tuning it yourself, visit the <a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> repository on GitHub. The Parler-TTS codebase and associated checkpoints are licensed under the <a href="https://github.com/huggingface/parler-tts/blob/main/LICENSE">Apache 2.0 license</a>.</p> | |
""" | |
) | |
block.queue() | |
block.launch(share=True) | |