|
from tensorflow.keras.models import load_model |
|
import numpy as np |
|
import cv2 |
|
|
|
model = load_model('model-3.h5') |
|
|
|
def predict_from_img(img): |
|
img = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) |
|
img = img/255.0 |
|
img = np.expand_dims(img,axis = 0) |
|
output = model.predict(img)[0][0] |
|
return {'NORMAL':float(output),'PNEUMONIA':float(1-output)} |
|
|
|
import gradio as gr |
|
image = gr.inputs.Image(shape=(150,150)) |
|
label = gr.outputs.Label(num_top_classes=2) |
|
gr.Interface(fn=predict_from_img, inputs=image, outputs=label,title = 'PNEUMONIA-DETECTION').launch() |