Roman Solomatin commited on
Commit
c7ac965
Β·
unverified Β·
1 Parent(s): 43fec8c
.gitignore CHANGED
@@ -11,3 +11,4 @@ eval-results/
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
 
 
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
14
+ /.pdm-python
.pre-commit-config.yaml CHANGED
@@ -46,8 +46,17 @@ repos:
46
  name: Format code
47
  additional_dependencies: ['click==8.0.2']
48
 
49
- - repo: https://github.com/charliermarsh/ruff-pre-commit
50
- # Ruff version.
51
- rev: 'v0.0.267'
52
  hooks:
53
  - id: ruff
 
 
 
 
 
 
 
 
 
 
 
46
  name: Format code
47
  additional_dependencies: ['click==8.0.2']
48
 
49
+ - repo: https://github.com/astral-sh/ruff-pre-commit
50
+ rev: v0.4.4
 
51
  hooks:
52
  - id: ruff
53
+ types_or: [ python, pyi, jupyter ]
54
+ args: [ --config, pyproject.toml, --fix, --output-format=github]
55
+
56
+ - id: ruff
57
+ types_or: [ python, pyi, jupyter ]
58
+ args: [ --config, pyproject.toml, --fix ]
59
+ # Run the formatter.
60
+ - id: ruff-format
61
+ types_or: [ python, pyi, jupyter ]
62
+ args: [ --config, pyproject.toml ]
Makefile CHANGED
@@ -1,13 +1,13 @@
1
  .PHONY: style format
2
 
 
3
 
4
  style:
5
- python -m black --line-length 119 .
6
- python -m isort .
7
- ruff check --fix .
8
 
9
 
10
  quality:
11
- python -m black --check --line-length 119 .
12
- python -m isort --check-only .
13
- ruff check .
 
1
  .PHONY: style format
2
 
3
+ .DEFAULT_GOAL := all
4
 
5
  style:
6
+ ruff format
7
+ pre-commit run --all-files
 
8
 
9
 
10
  quality:
11
+ ruff check
12
+
13
+ all: style quality
README.md CHANGED
@@ -1,12 +1,12 @@
1
  ---
2
- title: E
3
  emoji: πŸ₯‡
4
  colorFrom: green
5
  colorTo: indigo
6
  sdk: gradio
7
- app_file: app.py
8
  pinned: true
9
- license: apache-2.0
10
  ---
11
 
12
  # Start the configuration
@@ -38,7 +38,7 @@ If you encounter problem on the space, don't hesitate to restart it to remove th
38
 
39
  # Code logic for more complex edits
40
 
41
- You'll find
42
  - the main table' columns names and properties in `src/display/utils.py`
43
  - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
44
- - teh logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
 
1
  ---
2
+ title: Encodechka Leaderboard
3
  emoji: πŸ₯‡
4
  colorFrom: green
5
  colorTo: indigo
6
  sdk: gradio
7
+ app_file: src/encodechka/app.py
8
  pinned: true
9
+ license: MIT
10
  ---
11
 
12
  # Start the configuration
 
38
 
39
  # Code logic for more complex edits
40
 
41
+ You'll find
42
  - the main table' columns names and properties in `src/display/utils.py`
43
  - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
44
+ - teh logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
pdm.lock ADDED
@@ -0,0 +1,1358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is @generated by PDM.
2
+ # It is not intended for manual editing.
3
+
4
+ [metadata]
5
+ groups = ["default", "lint"]
6
+ strategy = ["cross_platform", "inherit_metadata"]
7
+ lock_version = "4.4.1"
8
+ content_hash = "sha256:ba1ca5b5cc998169567134133918478770dabd2af44598ba1f35371d0bb36083"
9
+
10
+ [[package]]
11
+ name = "aiofiles"
12
+ version = "23.2.1"
13
+ requires_python = ">=3.7"
14
+ summary = "File support for asyncio."
15
+ groups = ["default"]
16
+ files = [
17
+ {file = "aiofiles-23.2.1-py3-none-any.whl", hash = "sha256:19297512c647d4b27a2cf7c34caa7e405c0d60b5560618a29a9fe027b18b0107"},
18
+ {file = "aiofiles-23.2.1.tar.gz", hash = "sha256:84ec2218d8419404abcb9f0c02df3f34c6e0a68ed41072acfb1cef5cbc29051a"},
19
+ ]
20
+
21
+ [[package]]
22
+ name = "altair"
23
+ version = "5.3.0"
24
+ requires_python = ">=3.8"
25
+ summary = "Vega-Altair: A declarative statistical visualization library for Python."
26
+ groups = ["default"]
27
+ dependencies = [
28
+ "jinja2",
29
+ "jsonschema>=3.0",
30
+ "numpy",
31
+ "packaging",
32
+ "pandas>=0.25",
33
+ "toolz",
34
+ "typing-extensions>=4.0.1; python_version < \"3.11\"",
35
+ ]
36
+ files = [
37
+ {file = "altair-5.3.0-py3-none-any.whl", hash = "sha256:7084a1dab4d83c5e7e5246b92dc1b4451a6c68fd057f3716ee9d315c8980e59a"},
38
+ {file = "altair-5.3.0.tar.gz", hash = "sha256:5a268b1a0983b23d8f9129f819f956174aa7aea2719ed55a52eba9979b9f6675"},
39
+ ]
40
+
41
+ [[package]]
42
+ name = "annotated-types"
43
+ version = "0.7.0"
44
+ requires_python = ">=3.8"
45
+ summary = "Reusable constraint types to use with typing.Annotated"
46
+ groups = ["default"]
47
+ files = [
48
+ {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"},
49
+ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"},
50
+ ]
51
+
52
+ [[package]]
53
+ name = "anyio"
54
+ version = "4.4.0"
55
+ requires_python = ">=3.8"
56
+ summary = "High level compatibility layer for multiple asynchronous event loop implementations"
57
+ groups = ["default"]
58
+ dependencies = [
59
+ "exceptiongroup>=1.0.2; python_version < \"3.11\"",
60
+ "idna>=2.8",
61
+ "sniffio>=1.1",
62
+ "typing-extensions>=4.1; python_version < \"3.11\"",
63
+ ]
64
+ files = [
65
+ {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"},
66
+ {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"},
67
+ ]
68
+
69
+ [[package]]
70
+ name = "apscheduler"
71
+ version = "3.10.4"
72
+ requires_python = ">=3.6"
73
+ summary = "In-process task scheduler with Cron-like capabilities"
74
+ groups = ["default"]
75
+ dependencies = [
76
+ "pytz",
77
+ "six>=1.4.0",
78
+ "tzlocal!=3.*,>=2.0",
79
+ ]
80
+ files = [
81
+ {file = "APScheduler-3.10.4-py3-none-any.whl", hash = "sha256:fb91e8a768632a4756a585f79ec834e0e27aad5860bac7eaa523d9ccefd87661"},
82
+ {file = "APScheduler-3.10.4.tar.gz", hash = "sha256:e6df071b27d9be898e486bc7940a7be50b4af2e9da7c08f0744a96d4bd4cef4a"},
83
+ ]
84
+
85
+ [[package]]
86
+ name = "attrs"
87
+ version = "23.2.0"
88
+ requires_python = ">=3.7"
89
+ summary = "Classes Without Boilerplate"
90
+ groups = ["default"]
91
+ files = [
92
+ {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"},
93
+ {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"},
94
+ ]
95
+
96
+ [[package]]
97
+ name = "certifi"
98
+ version = "2024.6.2"
99
+ requires_python = ">=3.6"
100
+ summary = "Python package for providing Mozilla's CA Bundle."
101
+ groups = ["default"]
102
+ files = [
103
+ {file = "certifi-2024.6.2-py3-none-any.whl", hash = "sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56"},
104
+ {file = "certifi-2024.6.2.tar.gz", hash = "sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516"},
105
+ ]
106
+
107
+ [[package]]
108
+ name = "charset-normalizer"
109
+ version = "3.3.2"
110
+ requires_python = ">=3.7.0"
111
+ summary = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
112
+ groups = ["default"]
113
+ files = [
114
+ {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"},
115
+ {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"},
116
+ {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"},
117
+ {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"},
118
+ {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"},
119
+ {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"},
120
+ {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"},
121
+ {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"},
122
+ {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"},
123
+ {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"},
124
+ {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"},
125
+ {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"},
126
+ {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"},
127
+ {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"},
128
+ {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"},
129
+ {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"},
130
+ {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"},
131
+ ]
132
+
133
+ [[package]]
134
+ name = "click"
135
+ version = "8.1.7"
136
+ requires_python = ">=3.7"
137
+ summary = "Composable command line interface toolkit"
138
+ groups = ["default"]
139
+ dependencies = [
140
+ "colorama; platform_system == \"Windows\"",
141
+ ]
142
+ files = [
143
+ {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
144
+ {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
145
+ ]
146
+
147
+ [[package]]
148
+ name = "colorama"
149
+ version = "0.4.6"
150
+ requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
151
+ summary = "Cross-platform colored terminal text."
152
+ groups = ["default"]
153
+ marker = "platform_system == \"Windows\" or sys_platform == \"win32\""
154
+ files = [
155
+ {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
156
+ {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
157
+ ]
158
+
159
+ [[package]]
160
+ name = "contourpy"
161
+ version = "1.2.1"
162
+ requires_python = ">=3.9"
163
+ summary = "Python library for calculating contours of 2D quadrilateral grids"
164
+ groups = ["default"]
165
+ dependencies = [
166
+ "numpy>=1.20",
167
+ ]
168
+ files = [
169
+ {file = "contourpy-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040"},
170
+ {file = "contourpy-1.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5b9eb0ca724a241683c9685a484da9d35c872fd42756574a7cfbf58af26677fd"},
171
+ {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c75507d0a55378240f781599c30e7776674dbaf883a46d1c90f37e563453480"},
172
+ {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11959f0ce4a6f7b76ec578576a0b61a28bdc0696194b6347ba3f1c53827178b9"},
173
+ {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb3315a8a236ee19b6df481fc5f997436e8ade24a9f03dfdc6bd490fea20c6da"},
174
+ {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f3ecaf76cd98e802f094e0d4fbc6dc9c45a8d0c4d185f0f6c2234e14e5f75b"},
175
+ {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:94b34f32646ca0414237168d68a9157cb3889f06b096612afdd296003fdd32fd"},
176
+ {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:457499c79fa84593f22454bbd27670227874cd2ff5d6c84e60575c8b50a69619"},
177
+ {file = "contourpy-1.2.1-cp310-cp310-win32.whl", hash = "sha256:ac58bdee53cbeba2ecad824fa8159493f0bf3b8ea4e93feb06c9a465d6c87da8"},
178
+ {file = "contourpy-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cffe0f850e89d7c0012a1fb8730f75edd4320a0a731ed0c183904fe6ecfc3a9"},
179
+ {file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"},
180
+ {file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"},
181
+ {file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"},
182
+ {file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"},
183
+ ]
184
+
185
+ [[package]]
186
+ name = "cycler"
187
+ version = "0.12.1"
188
+ requires_python = ">=3.8"
189
+ summary = "Composable style cycles"
190
+ groups = ["default"]
191
+ files = [
192
+ {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"},
193
+ {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"},
194
+ ]
195
+
196
+ [[package]]
197
+ name = "dnspython"
198
+ version = "2.6.1"
199
+ requires_python = ">=3.8"
200
+ summary = "DNS toolkit"
201
+ groups = ["default"]
202
+ files = [
203
+ {file = "dnspython-2.6.1-py3-none-any.whl", hash = "sha256:5ef3b9680161f6fa89daf8ad451b5f1a33b18ae8a1c6778cdf4b43f08c0a6e50"},
204
+ {file = "dnspython-2.6.1.tar.gz", hash = "sha256:e8f0f9c23a7b7cb99ded64e6c3a6f3e701d78f50c55e002b839dea7225cff7cc"},
205
+ ]
206
+
207
+ [[package]]
208
+ name = "email-validator"
209
+ version = "2.1.1"
210
+ requires_python = ">=3.8"
211
+ summary = "A robust email address syntax and deliverability validation library."
212
+ groups = ["default"]
213
+ dependencies = [
214
+ "dnspython>=2.0.0",
215
+ "idna>=2.0.0",
216
+ ]
217
+ files = [
218
+ {file = "email_validator-2.1.1-py3-none-any.whl", hash = "sha256:97d882d174e2a65732fb43bfce81a3a834cbc1bde8bf419e30ef5ea976370a05"},
219
+ {file = "email_validator-2.1.1.tar.gz", hash = "sha256:200a70680ba08904be6d1eef729205cc0d687634399a5924d842533efb824b84"},
220
+ ]
221
+
222
+ [[package]]
223
+ name = "exceptiongroup"
224
+ version = "1.2.1"
225
+ requires_python = ">=3.7"
226
+ summary = "Backport of PEP 654 (exception groups)"
227
+ groups = ["default"]
228
+ marker = "python_version < \"3.11\""
229
+ files = [
230
+ {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"},
231
+ {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"},
232
+ ]
233
+
234
+ [[package]]
235
+ name = "fastapi"
236
+ version = "0.111.0"
237
+ requires_python = ">=3.8"
238
+ summary = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
239
+ groups = ["default"]
240
+ dependencies = [
241
+ "email-validator>=2.0.0",
242
+ "fastapi-cli>=0.0.2",
243
+ "httpx>=0.23.0",
244
+ "jinja2>=2.11.2",
245
+ "orjson>=3.2.1",
246
+ "pydantic!=1.8,!=1.8.1,!=2.0.0,!=2.0.1,!=2.1.0,<3.0.0,>=1.7.4",
247
+ "python-multipart>=0.0.7",
248
+ "starlette<0.38.0,>=0.37.2",
249
+ "typing-extensions>=4.8.0",
250
+ "ujson!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0,>=4.0.1",
251
+ "uvicorn[standard]>=0.12.0",
252
+ ]
253
+ files = [
254
+ {file = "fastapi-0.111.0-py3-none-any.whl", hash = "sha256:97ecbf994be0bcbdadedf88c3150252bed7b2087075ac99735403b1b76cc8fc0"},
255
+ {file = "fastapi-0.111.0.tar.gz", hash = "sha256:b9db9dd147c91cb8b769f7183535773d8741dd46f9dc6676cd82eab510228cd7"},
256
+ ]
257
+
258
+ [[package]]
259
+ name = "fastapi-cli"
260
+ version = "0.0.4"
261
+ requires_python = ">=3.8"
262
+ summary = "Run and manage FastAPI apps from the command line with FastAPI CLI. πŸš€"
263
+ groups = ["default"]
264
+ dependencies = [
265
+ "typer>=0.12.3",
266
+ ]
267
+ files = [
268
+ {file = "fastapi_cli-0.0.4-py3-none-any.whl", hash = "sha256:a2552f3a7ae64058cdbb530be6fa6dbfc975dc165e4fa66d224c3d396e25e809"},
269
+ {file = "fastapi_cli-0.0.4.tar.gz", hash = "sha256:e2e9ffaffc1f7767f488d6da34b6f5a377751c996f397902eb6abb99a67bde32"},
270
+ ]
271
+
272
+ [[package]]
273
+ name = "ffmpy"
274
+ version = "0.3.2"
275
+ summary = "A simple Python wrapper for ffmpeg"
276
+ groups = ["default"]
277
+ files = [
278
+ {file = "ffmpy-0.3.2.tar.gz", hash = "sha256:475ebfff1044661b8d969349dbcd2db9bf56d3ee78c0627e324769b49a27a78f"},
279
+ ]
280
+
281
+ [[package]]
282
+ name = "filelock"
283
+ version = "3.15.1"
284
+ requires_python = ">=3.8"
285
+ summary = "A platform independent file lock."
286
+ groups = ["default"]
287
+ files = [
288
+ {file = "filelock-3.15.1-py3-none-any.whl", hash = "sha256:71b3102950e91dfc1bb4209b64be4dc8854f40e5f534428d8684f953ac847fac"},
289
+ {file = "filelock-3.15.1.tar.gz", hash = "sha256:58a2549afdf9e02e10720eaa4d4470f56386d7a6f72edd7d0596337af8ed7ad8"},
290
+ ]
291
+
292
+ [[package]]
293
+ name = "fonttools"
294
+ version = "4.53.0"
295
+ requires_python = ">=3.8"
296
+ summary = "Tools to manipulate font files"
297
+ groups = ["default"]
298
+ files = [
299
+ {file = "fonttools-4.53.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:52a6e0a7a0bf611c19bc8ec8f7592bdae79c8296c70eb05917fd831354699b20"},
300
+ {file = "fonttools-4.53.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:099634631b9dd271d4a835d2b2a9e042ccc94ecdf7e2dd9f7f34f7daf333358d"},
301
+ {file = "fonttools-4.53.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e40013572bfb843d6794a3ce076c29ef4efd15937ab833f520117f8eccc84fd6"},
302
+ {file = "fonttools-4.53.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:715b41c3e231f7334cbe79dfc698213dcb7211520ec7a3bc2ba20c8515e8a3b5"},
303
+ {file = "fonttools-4.53.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:74ae2441731a05b44d5988d3ac2cf784d3ee0a535dbed257cbfff4be8bb49eb9"},
304
+ {file = "fonttools-4.53.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:95db0c6581a54b47c30860d013977b8a14febc206c8b5ff562f9fe32738a8aca"},
305
+ {file = "fonttools-4.53.0-cp310-cp310-win32.whl", hash = "sha256:9cd7a6beec6495d1dffb1033d50a3f82dfece23e9eb3c20cd3c2444d27514068"},
306
+ {file = "fonttools-4.53.0-cp310-cp310-win_amd64.whl", hash = "sha256:daaef7390e632283051e3cf3e16aff2b68b247e99aea916f64e578c0449c9c68"},
307
+ {file = "fonttools-4.53.0-py3-none-any.whl", hash = "sha256:6b4f04b1fbc01a3569d63359f2227c89ab294550de277fd09d8fca6185669fa4"},
308
+ {file = "fonttools-4.53.0.tar.gz", hash = "sha256:c93ed66d32de1559b6fc348838c7572d5c0ac1e4a258e76763a5caddd8944002"},
309
+ ]
310
+
311
+ [[package]]
312
+ name = "fsspec"
313
+ version = "2024.6.0"
314
+ requires_python = ">=3.8"
315
+ summary = "File-system specification"
316
+ groups = ["default"]
317
+ files = [
318
+ {file = "fsspec-2024.6.0-py3-none-any.whl", hash = "sha256:58d7122eb8a1a46f7f13453187bfea4972d66bf01618d37366521b1998034cee"},
319
+ {file = "fsspec-2024.6.0.tar.gz", hash = "sha256:f579960a56e6d8038a9efc8f9c77279ec12e6299aa86b0769a7e9c46b94527c2"},
320
+ ]
321
+
322
+ [[package]]
323
+ name = "gradio"
324
+ version = "4.36.1"
325
+ requires_python = ">=3.8"
326
+ summary = "Python library for easily interacting with trained machine learning models"
327
+ groups = ["default"]
328
+ dependencies = [
329
+ "aiofiles<24.0,>=22.0",
330
+ "altair<6.0,>=4.2.0",
331
+ "fastapi",
332
+ "ffmpy",
333
+ "gradio-client==1.0.1",
334
+ "httpx>=0.24.1",
335
+ "huggingface-hub>=0.19.3",
336
+ "importlib-resources<7.0,>=1.3",
337
+ "jinja2<4.0",
338
+ "markupsafe~=2.0",
339
+ "matplotlib~=3.0",
340
+ "numpy<3.0,>=1.0",
341
+ "orjson~=3.0",
342
+ "packaging",
343
+ "pandas<3.0,>=1.0",
344
+ "pillow<11.0,>=8.0",
345
+ "pydantic>=2.0",
346
+ "pydub",
347
+ "python-multipart>=0.0.9",
348
+ "pyyaml<7.0,>=5.0",
349
+ "ruff>=0.2.2; sys_platform != \"emscripten\"",
350
+ "semantic-version~=2.0",
351
+ "tomlkit==0.12.0",
352
+ "typer<1.0,>=0.12; sys_platform != \"emscripten\"",
353
+ "typing-extensions~=4.0",
354
+ "urllib3~=2.0",
355
+ "uvicorn>=0.14.0; sys_platform != \"emscripten\"",
356
+ ]
357
+ files = [
358
+ {file = "gradio-4.36.1-py3-none-any.whl", hash = "sha256:31edb504c88c1db06c08daf750dcdaa072087ada59aa4ff83c1a3f4c2075912d"},
359
+ {file = "gradio-4.36.1.tar.gz", hash = "sha256:72b2d21156d3467123bae6f30f463f002ef06e272766274308f5ed3cac37563b"},
360
+ ]
361
+
362
+ [[package]]
363
+ name = "gradio-client"
364
+ version = "1.0.1"
365
+ requires_python = ">=3.8"
366
+ summary = "Python library for easily interacting with trained machine learning models"
367
+ groups = ["default"]
368
+ dependencies = [
369
+ "fsspec",
370
+ "httpx>=0.24.1",
371
+ "huggingface-hub>=0.19.3",
372
+ "packaging",
373
+ "typing-extensions~=4.0",
374
+ "websockets<12.0,>=10.0",
375
+ ]
376
+ files = [
377
+ {file = "gradio_client-1.0.1-py3-none-any.whl", hash = "sha256:fe3f527349ac38cbc5deb6d629a15c06fa3b4a68d1e04dc5ca9fbb1896318629"},
378
+ {file = "gradio_client-1.0.1.tar.gz", hash = "sha256:b3fa4d1c626067cc866d6172caa75d373e114bacfba650e49e293646d786646a"},
379
+ ]
380
+
381
+ [[package]]
382
+ name = "h11"
383
+ version = "0.14.0"
384
+ requires_python = ">=3.7"
385
+ summary = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
386
+ groups = ["default"]
387
+ files = [
388
+ {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"},
389
+ {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
390
+ ]
391
+
392
+ [[package]]
393
+ name = "httpcore"
394
+ version = "1.0.5"
395
+ requires_python = ">=3.8"
396
+ summary = "A minimal low-level HTTP client."
397
+ groups = ["default"]
398
+ dependencies = [
399
+ "certifi",
400
+ "h11<0.15,>=0.13",
401
+ ]
402
+ files = [
403
+ {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"},
404
+ {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"},
405
+ ]
406
+
407
+ [[package]]
408
+ name = "httptools"
409
+ version = "0.6.1"
410
+ requires_python = ">=3.8.0"
411
+ summary = "A collection of framework independent HTTP protocol utils."
412
+ groups = ["default"]
413
+ files = [
414
+ {file = "httptools-0.6.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d2f6c3c4cb1948d912538217838f6e9960bc4a521d7f9b323b3da579cd14532f"},
415
+ {file = "httptools-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:00d5d4b68a717765b1fabfd9ca755bd12bf44105eeb806c03d1962acd9b8e563"},
416
+ {file = "httptools-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:639dc4f381a870c9ec860ce5c45921db50205a37cc3334e756269736ff0aac58"},
417
+ {file = "httptools-0.6.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e57997ac7fb7ee43140cc03664de5f268813a481dff6245e0075925adc6aa185"},
418
+ {file = "httptools-0.6.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0ac5a0ae3d9f4fe004318d64b8a854edd85ab76cffbf7ef5e32920faef62f142"},
419
+ {file = "httptools-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3f30d3ce413088a98b9db71c60a6ada2001a08945cb42dd65a9a9fe228627658"},
420
+ {file = "httptools-0.6.1-cp310-cp310-win_amd64.whl", hash = "sha256:1ed99a373e327f0107cb513b61820102ee4f3675656a37a50083eda05dc9541b"},
421
+ {file = "httptools-0.6.1.tar.gz", hash = "sha256:c6e26c30455600b95d94b1b836085138e82f177351454ee841c148f93a9bad5a"},
422
+ ]
423
+
424
+ [[package]]
425
+ name = "httpx"
426
+ version = "0.27.0"
427
+ requires_python = ">=3.8"
428
+ summary = "The next generation HTTP client."
429
+ groups = ["default"]
430
+ dependencies = [
431
+ "anyio",
432
+ "certifi",
433
+ "httpcore==1.*",
434
+ "idna",
435
+ "sniffio",
436
+ ]
437
+ files = [
438
+ {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"},
439
+ {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"},
440
+ ]
441
+
442
+ [[package]]
443
+ name = "huggingface-hub"
444
+ version = "0.23.3"
445
+ requires_python = ">=3.8.0"
446
+ summary = "Client library to download and publish models, datasets and other repos on the huggingface.co hub"
447
+ groups = ["default"]
448
+ dependencies = [
449
+ "filelock",
450
+ "fsspec>=2023.5.0",
451
+ "packaging>=20.9",
452
+ "pyyaml>=5.1",
453
+ "requests",
454
+ "tqdm>=4.42.1",
455
+ "typing-extensions>=3.7.4.3",
456
+ ]
457
+ files = [
458
+ {file = "huggingface_hub-0.23.3-py3-none-any.whl", hash = "sha256:22222c41223f1b7c209ae5511d2d82907325a0e3cdbce5f66949d43c598ff3bc"},
459
+ {file = "huggingface_hub-0.23.3.tar.gz", hash = "sha256:1a1118a0b3dea3bab6c325d71be16f5ffe441d32f3ac7c348d6875911b694b5b"},
460
+ ]
461
+
462
+ [[package]]
463
+ name = "idna"
464
+ version = "3.7"
465
+ requires_python = ">=3.5"
466
+ summary = "Internationalized Domain Names in Applications (IDNA)"
467
+ groups = ["default"]
468
+ files = [
469
+ {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"},
470
+ {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"},
471
+ ]
472
+
473
+ [[package]]
474
+ name = "importlib-resources"
475
+ version = "6.4.0"
476
+ requires_python = ">=3.8"
477
+ summary = "Read resources from Python packages"
478
+ groups = ["default"]
479
+ files = [
480
+ {file = "importlib_resources-6.4.0-py3-none-any.whl", hash = "sha256:50d10f043df931902d4194ea07ec57960f66a80449ff867bfe782b4c486ba78c"},
481
+ {file = "importlib_resources-6.4.0.tar.gz", hash = "sha256:cdb2b453b8046ca4e3798eb1d84f3cce1446a0e8e7b5ef4efb600f19fc398145"},
482
+ ]
483
+
484
+ [[package]]
485
+ name = "jinja2"
486
+ version = "3.1.4"
487
+ requires_python = ">=3.7"
488
+ summary = "A very fast and expressive template engine."
489
+ groups = ["default"]
490
+ dependencies = [
491
+ "MarkupSafe>=2.0",
492
+ ]
493
+ files = [
494
+ {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"},
495
+ {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"},
496
+ ]
497
+
498
+ [[package]]
499
+ name = "jsonschema"
500
+ version = "4.22.0"
501
+ requires_python = ">=3.8"
502
+ summary = "An implementation of JSON Schema validation for Python"
503
+ groups = ["default"]
504
+ dependencies = [
505
+ "attrs>=22.2.0",
506
+ "jsonschema-specifications>=2023.03.6",
507
+ "referencing>=0.28.4",
508
+ "rpds-py>=0.7.1",
509
+ ]
510
+ files = [
511
+ {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"},
512
+ {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"},
513
+ ]
514
+
515
+ [[package]]
516
+ name = "jsonschema-specifications"
517
+ version = "2023.12.1"
518
+ requires_python = ">=3.8"
519
+ summary = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry"
520
+ groups = ["default"]
521
+ dependencies = [
522
+ "referencing>=0.31.0",
523
+ ]
524
+ files = [
525
+ {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"},
526
+ {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"},
527
+ ]
528
+
529
+ [[package]]
530
+ name = "kiwisolver"
531
+ version = "1.4.5"
532
+ requires_python = ">=3.7"
533
+ summary = "A fast implementation of the Cassowary constraint solver"
534
+ groups = ["default"]
535
+ files = [
536
+ {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"},
537
+ {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"},
538
+ {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"},
539
+ {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"},
540
+ {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"},
541
+ {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"},
542
+ {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"},
543
+ {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"},
544
+ {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"},
545
+ {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"},
546
+ {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"},
547
+ {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"},
548
+ {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"},
549
+ {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"},
550
+ {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"},
551
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"},
552
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"},
553
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"},
554
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"},
555
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"},
556
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"},
557
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"},
558
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"},
559
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"},
560
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"},
561
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"},
562
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"},
563
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"},
564
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"},
565
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"},
566
+ {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"},
567
+ ]
568
+
569
+ [[package]]
570
+ name = "markdown-it-py"
571
+ version = "3.0.0"
572
+ requires_python = ">=3.8"
573
+ summary = "Python port of markdown-it. Markdown parsing, done right!"
574
+ groups = ["default"]
575
+ dependencies = [
576
+ "mdurl~=0.1",
577
+ ]
578
+ files = [
579
+ {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
580
+ {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
581
+ ]
582
+
583
+ [[package]]
584
+ name = "markupsafe"
585
+ version = "2.1.5"
586
+ requires_python = ">=3.7"
587
+ summary = "Safely add untrusted strings to HTML/XML markup."
588
+ groups = ["default"]
589
+ files = [
590
+ {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"},
591
+ {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"},
592
+ {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"},
593
+ {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"},
594
+ {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"},
595
+ {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"},
596
+ {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"},
597
+ {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"},
598
+ {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"},
599
+ {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"},
600
+ {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"},
601
+ ]
602
+
603
+ [[package]]
604
+ name = "matplotlib"
605
+ version = "3.9.0"
606
+ requires_python = ">=3.9"
607
+ summary = "Python plotting package"
608
+ groups = ["default"]
609
+ dependencies = [
610
+ "contourpy>=1.0.1",
611
+ "cycler>=0.10",
612
+ "fonttools>=4.22.0",
613
+ "kiwisolver>=1.3.1",
614
+ "numpy>=1.23",
615
+ "packaging>=20.0",
616
+ "pillow>=8",
617
+ "pyparsing>=2.3.1",
618
+ "python-dateutil>=2.7",
619
+ ]
620
+ files = [
621
+ {file = "matplotlib-3.9.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2bcee1dffaf60fe7656183ac2190bd630842ff87b3153afb3e384d966b57fe56"},
622
+ {file = "matplotlib-3.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3f988bafb0fa39d1074ddd5bacd958c853e11def40800c5824556eb630f94d3b"},
623
+ {file = "matplotlib-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe428e191ea016bb278758c8ee82a8129c51d81d8c4bc0846c09e7e8e9057241"},
624
+ {file = "matplotlib-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaf3978060a106fab40c328778b148f590e27f6fa3cd15a19d6892575bce387d"},
625
+ {file = "matplotlib-3.9.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2e7f03e5cbbfacdd48c8ea394d365d91ee8f3cae7e6ec611409927b5ed997ee4"},
626
+ {file = "matplotlib-3.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:13beb4840317d45ffd4183a778685e215939be7b08616f431c7795276e067463"},
627
+ {file = "matplotlib-3.9.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bd4f2831168afac55b881db82a7730992aa41c4f007f1913465fb182d6fb20c0"},
628
+ {file = "matplotlib-3.9.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:290d304e59be2b33ef5c2d768d0237f5bd132986bdcc66f80bc9bcc300066a03"},
629
+ {file = "matplotlib-3.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ff2e239c26be4f24bfa45860c20ffccd118d270c5b5d081fa4ea409b5469fcd"},
630
+ {file = "matplotlib-3.9.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:af4001b7cae70f7eaacfb063db605280058246de590fa7874f00f62259f2df7e"},
631
+ {file = "matplotlib-3.9.0.tar.gz", hash = "sha256:e6d29ea6c19e34b30fb7d88b7081f869a03014f66fe06d62cc77d5a6ea88ed7a"},
632
+ ]
633
+
634
+ [[package]]
635
+ name = "mdurl"
636
+ version = "0.1.2"
637
+ requires_python = ">=3.7"
638
+ summary = "Markdown URL utilities"
639
+ groups = ["default"]
640
+ files = [
641
+ {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
642
+ {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
643
+ ]
644
+
645
+ [[package]]
646
+ name = "numpy"
647
+ version = "1.26.4"
648
+ requires_python = ">=3.9"
649
+ summary = "Fundamental package for array computing in Python"
650
+ groups = ["default"]
651
+ files = [
652
+ {file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"},
653
+ {file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"},
654
+ {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"},
655
+ {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"},
656
+ {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"},
657
+ {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"},
658
+ {file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"},
659
+ {file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"},
660
+ {file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"},
661
+ {file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"},
662
+ {file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"},
663
+ {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"},
664
+ ]
665
+
666
+ [[package]]
667
+ name = "orjson"
668
+ version = "3.10.4"
669
+ requires_python = ">=3.8"
670
+ summary = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy"
671
+ groups = ["default"]
672
+ files = [
673
+ {file = "orjson-3.10.4-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:afca963f19ca60c7aedadea9979f769139127288dd58ccf3f7c5e8e6dc62cabf"},
674
+ {file = "orjson-3.10.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42b112eff36ba7ccc7a9d6b87e17b9d6bde4312d05e3ddf66bf5662481dee846"},
675
+ {file = "orjson-3.10.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02b192eaba048b1039eca9a0cef67863bd5623042f5c441889a9957121d97e14"},
676
+ {file = "orjson-3.10.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:827c3d0e4fc44242c82bfdb1a773235b8c0575afee99a9fa9a8ce920c14e440f"},
677
+ {file = "orjson-3.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca8ec09724f10ec209244caeb1f9f428b6bb03f2eda9ed5e2c4dd7f2b7fabd44"},
678
+ {file = "orjson-3.10.4-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:8eaa5d531a8fde11993cbcb27e9acf7d9c457ba301adccb7fa3a021bfecab46c"},
679
+ {file = "orjson-3.10.4-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e112aa7fc4ea67367ec5e86c39a6bb6c5719eddc8f999087b1759e765ddaf2d4"},
680
+ {file = "orjson-3.10.4-cp310-none-win32.whl", hash = "sha256:1538844fb88446c42da3889f8c4ecce95a630b5a5ba18ecdfe5aea596f4dff21"},
681
+ {file = "orjson-3.10.4-cp310-none-win_amd64.whl", hash = "sha256:de02811903a2e434127fba5389c3cc90f689542339a6e52e691ab7f693407b5a"},
682
+ {file = "orjson-3.10.4.tar.gz", hash = "sha256:c912ed25b787c73fe994a5decd81c3f3b256599b8a87d410d799d5d52013af2a"},
683
+ ]
684
+
685
+ [[package]]
686
+ name = "packaging"
687
+ version = "24.1"
688
+ requires_python = ">=3.8"
689
+ summary = "Core utilities for Python packages"
690
+ groups = ["default"]
691
+ files = [
692
+ {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"},
693
+ {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"},
694
+ ]
695
+
696
+ [[package]]
697
+ name = "pandas"
698
+ version = "2.2.2"
699
+ requires_python = ">=3.9"
700
+ summary = "Powerful data structures for data analysis, time series, and statistics"
701
+ groups = ["default"]
702
+ dependencies = [
703
+ "numpy>=1.22.4; python_version < \"3.11\"",
704
+ "python-dateutil>=2.8.2",
705
+ "pytz>=2020.1",
706
+ "tzdata>=2022.7",
707
+ ]
708
+ files = [
709
+ {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"},
710
+ {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"},
711
+ {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"},
712
+ {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"},
713
+ {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"},
714
+ {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"},
715
+ {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"},
716
+ {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"},
717
+ ]
718
+
719
+ [[package]]
720
+ name = "pillow"
721
+ version = "10.3.0"
722
+ requires_python = ">=3.8"
723
+ summary = "Python Imaging Library (Fork)"
724
+ groups = ["default"]
725
+ files = [
726
+ {file = "pillow-10.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45"},
727
+ {file = "pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c"},
728
+ {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf"},
729
+ {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599"},
730
+ {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475"},
731
+ {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf"},
732
+ {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3"},
733
+ {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5"},
734
+ {file = "pillow-10.3.0-cp310-cp310-win32.whl", hash = "sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2"},
735
+ {file = "pillow-10.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f"},
736
+ {file = "pillow-10.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b"},
737
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"},
738
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"},
739
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"},
740
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"},
741
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"},
742
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"},
743
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"},
744
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"},
745
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"},
746
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"},
747
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"},
748
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"},
749
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"},
750
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"},
751
+ {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"},
752
+ ]
753
+
754
+ [[package]]
755
+ name = "pydantic"
756
+ version = "2.7.4"
757
+ requires_python = ">=3.8"
758
+ summary = "Data validation using Python type hints"
759
+ groups = ["default"]
760
+ dependencies = [
761
+ "annotated-types>=0.4.0",
762
+ "pydantic-core==2.18.4",
763
+ "typing-extensions>=4.6.1",
764
+ ]
765
+ files = [
766
+ {file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"},
767
+ {file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"},
768
+ ]
769
+
770
+ [[package]]
771
+ name = "pydantic-core"
772
+ version = "2.18.4"
773
+ requires_python = ">=3.8"
774
+ summary = "Core functionality for Pydantic validation and serialization"
775
+ groups = ["default"]
776
+ dependencies = [
777
+ "typing-extensions!=4.7.0,>=4.6.0",
778
+ ]
779
+ files = [
780
+ {file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"},
781
+ {file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"},
782
+ {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"},
783
+ {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"},
784
+ {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"},
785
+ {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"},
786
+ {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"},
787
+ {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"},
788
+ {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"},
789
+ {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"},
790
+ {file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"},
791
+ {file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"},
792
+ {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"},
793
+ {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"},
794
+ {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"},
795
+ {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"},
796
+ {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"},
797
+ {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"},
798
+ {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"},
799
+ {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"},
800
+ {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"},
801
+ {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"},
802
+ {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"},
803
+ {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"},
804
+ {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"},
805
+ {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"},
806
+ {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"},
807
+ {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"},
808
+ {file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"},
809
+ ]
810
+
811
+ [[package]]
812
+ name = "pydub"
813
+ version = "0.25.1"
814
+ summary = "Manipulate audio with an simple and easy high level interface"
815
+ groups = ["default"]
816
+ files = [
817
+ {file = "pydub-0.25.1-py2.py3-none-any.whl", hash = "sha256:65617e33033874b59d87db603aa1ed450633288aefead953b30bded59cb599a6"},
818
+ {file = "pydub-0.25.1.tar.gz", hash = "sha256:980a33ce9949cab2a569606b65674d748ecbca4f0796887fd6f46173a7b0d30f"},
819
+ ]
820
+
821
+ [[package]]
822
+ name = "pygments"
823
+ version = "2.18.0"
824
+ requires_python = ">=3.8"
825
+ summary = "Pygments is a syntax highlighting package written in Python."
826
+ groups = ["default"]
827
+ files = [
828
+ {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"},
829
+ {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"},
830
+ ]
831
+
832
+ [[package]]
833
+ name = "pyparsing"
834
+ version = "3.1.2"
835
+ requires_python = ">=3.6.8"
836
+ summary = "pyparsing module - Classes and methods to define and execute parsing grammars"
837
+ groups = ["default"]
838
+ files = [
839
+ {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"},
840
+ {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"},
841
+ ]
842
+
843
+ [[package]]
844
+ name = "python-dateutil"
845
+ version = "2.9.0.post0"
846
+ requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
847
+ summary = "Extensions to the standard Python datetime module"
848
+ groups = ["default"]
849
+ dependencies = [
850
+ "six>=1.5",
851
+ ]
852
+ files = [
853
+ {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"},
854
+ {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"},
855
+ ]
856
+
857
+ [[package]]
858
+ name = "python-dotenv"
859
+ version = "1.0.1"
860
+ requires_python = ">=3.8"
861
+ summary = "Read key-value pairs from a .env file and set them as environment variables"
862
+ groups = ["default"]
863
+ files = [
864
+ {file = "python-dotenv-1.0.1.tar.gz", hash = "sha256:e324ee90a023d808f1959c46bcbc04446a10ced277783dc6ee09987c37ec10ca"},
865
+ {file = "python_dotenv-1.0.1-py3-none-any.whl", hash = "sha256:f7b63ef50f1b690dddf550d03497b66d609393b40b564ed0d674909a68ebf16a"},
866
+ ]
867
+
868
+ [[package]]
869
+ name = "python-multipart"
870
+ version = "0.0.9"
871
+ requires_python = ">=3.8"
872
+ summary = "A streaming multipart parser for Python"
873
+ groups = ["default"]
874
+ files = [
875
+ {file = "python_multipart-0.0.9-py3-none-any.whl", hash = "sha256:97ca7b8ea7b05f977dc3849c3ba99d51689822fab725c3703af7c866a0c2b215"},
876
+ {file = "python_multipart-0.0.9.tar.gz", hash = "sha256:03f54688c663f1b7977105f021043b0793151e4cb1c1a9d4a11fc13d622c4026"},
877
+ ]
878
+
879
+ [[package]]
880
+ name = "pytz"
881
+ version = "2024.1"
882
+ summary = "World timezone definitions, modern and historical"
883
+ groups = ["default"]
884
+ files = [
885
+ {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"},
886
+ {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"},
887
+ ]
888
+
889
+ [[package]]
890
+ name = "pyyaml"
891
+ version = "6.0.1"
892
+ requires_python = ">=3.6"
893
+ summary = "YAML parser and emitter for Python"
894
+ groups = ["default"]
895
+ files = [
896
+ {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"},
897
+ {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"},
898
+ {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"},
899
+ {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"},
900
+ {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"},
901
+ {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"},
902
+ {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"},
903
+ {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"},
904
+ {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
905
+ ]
906
+
907
+ [[package]]
908
+ name = "referencing"
909
+ version = "0.35.1"
910
+ requires_python = ">=3.8"
911
+ summary = "JSON Referencing + Python"
912
+ groups = ["default"]
913
+ dependencies = [
914
+ "attrs>=22.2.0",
915
+ "rpds-py>=0.7.0",
916
+ ]
917
+ files = [
918
+ {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"},
919
+ {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"},
920
+ ]
921
+
922
+ [[package]]
923
+ name = "requests"
924
+ version = "2.32.3"
925
+ requires_python = ">=3.8"
926
+ summary = "Python HTTP for Humans."
927
+ groups = ["default"]
928
+ dependencies = [
929
+ "certifi>=2017.4.17",
930
+ "charset-normalizer<4,>=2",
931
+ "idna<4,>=2.5",
932
+ "urllib3<3,>=1.21.1",
933
+ ]
934
+ files = [
935
+ {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"},
936
+ {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"},
937
+ ]
938
+
939
+ [[package]]
940
+ name = "rich"
941
+ version = "13.7.1"
942
+ requires_python = ">=3.7.0"
943
+ summary = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
944
+ groups = ["default"]
945
+ dependencies = [
946
+ "markdown-it-py>=2.2.0",
947
+ "pygments<3.0.0,>=2.13.0",
948
+ ]
949
+ files = [
950
+ {file = "rich-13.7.1-py3-none-any.whl", hash = "sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222"},
951
+ {file = "rich-13.7.1.tar.gz", hash = "sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432"},
952
+ ]
953
+
954
+ [[package]]
955
+ name = "rpds-py"
956
+ version = "0.18.1"
957
+ requires_python = ">=3.8"
958
+ summary = "Python bindings to Rust's persistent data structures (rpds)"
959
+ groups = ["default"]
960
+ files = [
961
+ {file = "rpds_py-0.18.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d31dea506d718693b6b2cffc0648a8929bdc51c70a311b2770f09611caa10d53"},
962
+ {file = "rpds_py-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:732672fbc449bab754e0b15356c077cc31566df874964d4801ab14f71951ea80"},
963
+ {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a98a1f0552b5f227a3d6422dbd61bc6f30db170939bd87ed14f3c339aa6c7c9"},
964
+ {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f1944ce16401aad1e3f7d312247b3d5de7981f634dc9dfe90da72b87d37887d"},
965
+ {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38e14fb4e370885c4ecd734f093a2225ee52dc384b86fa55fe3f74638b2cfb09"},
966
+ {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08d74b184f9ab6289b87b19fe6a6d1a97fbfea84b8a3e745e87a5de3029bf944"},
967
+ {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d70129cef4a8d979caa37e7fe957202e7eee8ea02c5e16455bc9808a59c6b2f0"},
968
+ {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ce0bb20e3a11bd04461324a6a798af34d503f8d6f1aa3d2aa8901ceaf039176d"},
969
+ {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:81c5196a790032e0fc2464c0b4ab95f8610f96f1f2fa3d4deacce6a79852da60"},
970
+ {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:f3027be483868c99b4985fda802a57a67fdf30c5d9a50338d9db646d590198da"},
971
+ {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d44607f98caa2961bab4fa3c4309724b185b464cdc3ba6f3d7340bac3ec97cc1"},
972
+ {file = "rpds_py-0.18.1-cp310-none-win32.whl", hash = "sha256:c273e795e7a0f1fddd46e1e3cb8be15634c29ae8ff31c196debb620e1edb9333"},
973
+ {file = "rpds_py-0.18.1-cp310-none-win_amd64.whl", hash = "sha256:8352f48d511de5f973e4f2f9412736d7dea76c69faa6d36bcf885b50c758ab9a"},
974
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cbfbea39ba64f5e53ae2915de36f130588bba71245b418060ec3330ebf85678e"},
975
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a3d456ff2a6a4d2adcdf3c1c960a36f4fd2fec6e3b4902a42a384d17cf4e7a65"},
976
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7700936ef9d006b7ef605dc53aa364da2de5a3aa65516a1f3ce73bf82ecfc7ae"},
977
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:51584acc5916212e1bf45edd17f3a6b05fe0cbb40482d25e619f824dccb679de"},
978
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:942695a206a58d2575033ff1e42b12b2aece98d6003c6bc739fbf33d1773b12f"},
979
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b906b5f58892813e5ba5c6056d6a5ad08f358ba49f046d910ad992196ea61397"},
980
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f8e3fecca256fefc91bb6765a693d96692459d7d4c644660a9fff32e517843"},
981
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7732770412bab81c5a9f6d20aeb60ae943a9b36dcd990d876a773526468e7163"},
982
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bd1105b50ede37461c1d51b9698c4f4be6e13e69a908ab7751e3807985fc0346"},
983
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:618916f5535784960f3ecf8111581f4ad31d347c3de66d02e728de460a46303c"},
984
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:17c6d2155e2423f7e79e3bb18151c686d40db42d8645e7977442170c360194d4"},
985
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c4c4c3f878df21faf5fac86eda32671c27889e13570645a9eea0a1abdd50922"},
986
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:fab6ce90574645a0d6c58890e9bcaac8d94dff54fb51c69e5522a7358b80ab64"},
987
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531796fb842b53f2695e94dc338929e9f9dbf473b64710c28af5a160b2a8927d"},
988
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:740884bc62a5e2bbb31e584f5d23b32320fd75d79f916f15a788d527a5e83644"},
989
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:998125738de0158f088aef3cb264a34251908dd2e5d9966774fdab7402edfab7"},
990
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e2be6e9dd4111d5b31ba3b74d17da54a8319d8168890fbaea4b9e5c3de630ae5"},
991
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0cee71bc618cd93716f3c1bf56653740d2d13ddbd47673efa8bf41435a60daa"},
992
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2c3caec4ec5cd1d18e5dd6ae5194d24ed12785212a90b37f5f7f06b8bedd7139"},
993
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:27bba383e8c5231cd559affe169ca0b96ec78d39909ffd817f28b166d7ddd4d8"},
994
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:a888e8bdb45916234b99da2d859566f1e8a1d2275a801bb8e4a9644e3c7e7909"},
995
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:6031b25fb1b06327b43d841f33842b383beba399884f8228a6bb3df3088485ff"},
996
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48c2faaa8adfacefcbfdb5f2e2e7bdad081e5ace8d182e5f4ade971f128e6bb3"},
997
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:d85164315bd68c0806768dc6bb0429c6f95c354f87485ee3593c4f6b14def2bd"},
998
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6afd80f6c79893cfc0574956f78a0add8c76e3696f2d6a15bca2c66c415cf2d4"},
999
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fa242ac1ff583e4ec7771141606aafc92b361cd90a05c30d93e343a0c2d82a89"},
1000
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21be4770ff4e08698e1e8e0bce06edb6ea0626e7c8f560bc08222880aca6a6f"},
1001
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c45a639e93a0c5d4b788b2613bd637468edd62f8f95ebc6fcc303d58ab3f0a8"},
1002
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910e71711d1055b2768181efa0a17537b2622afeb0424116619817007f8a2b10"},
1003
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b9bb1f182a97880f6078283b3505a707057c42bf55d8fca604f70dedfdc0772a"},
1004
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d54f74f40b1f7aaa595a02ff42ef38ca654b1469bef7d52867da474243cc633"},
1005
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8d2e182c9ee01135e11e9676e9a62dfad791a7a467738f06726872374a83db49"},
1006
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:636a15acc588f70fda1661234761f9ed9ad79ebed3f2125d44be0862708b666e"},
1007
+ {file = "rpds_py-0.18.1.tar.gz", hash = "sha256:dc48b479d540770c811fbd1eb9ba2bb66951863e448efec2e2c102625328e92f"},
1008
+ ]
1009
+
1010
+ [[package]]
1011
+ name = "ruff"
1012
+ version = "0.4.8"
1013
+ requires_python = ">=3.7"
1014
+ summary = "An extremely fast Python linter and code formatter, written in Rust."
1015
+ groups = ["default", "lint"]
1016
+ files = [
1017
+ {file = "ruff-0.4.8-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:7663a6d78f6adb0eab270fa9cf1ff2d28618ca3a652b60f2a234d92b9ec89066"},
1018
+ {file = "ruff-0.4.8-py3-none-macosx_11_0_arm64.whl", hash = "sha256:eeceb78da8afb6de0ddada93112869852d04f1cd0f6b80fe464fd4e35c330913"},
1019
+ {file = "ruff-0.4.8-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aad360893e92486662ef3be0a339c5ca3c1b109e0134fcd37d534d4be9fb8de3"},
1020
+ {file = "ruff-0.4.8-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:284c2e3f3396fb05f5f803c9fffb53ebbe09a3ebe7dda2929ed8d73ded736deb"},
1021
+ {file = "ruff-0.4.8-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a7354f921e3fbe04d2a62d46707e569f9315e1a613307f7311a935743c51a764"},
1022
+ {file = "ruff-0.4.8-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:72584676164e15a68a15778fd1b17c28a519e7a0622161eb2debdcdabdc71883"},
1023
+ {file = "ruff-0.4.8-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9678d5c9b43315f323af2233a04d747409d1e3aa6789620083a82d1066a35199"},
1024
+ {file = "ruff-0.4.8-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704977a658131651a22b5ebeb28b717ef42ac6ee3b11e91dc87b633b5d83142b"},
1025
+ {file = "ruff-0.4.8-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d05f8d6f0c3cce5026cecd83b7a143dcad503045857bc49662f736437380ad45"},
1026
+ {file = "ruff-0.4.8-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:6ea874950daca5697309d976c9afba830d3bf0ed66887481d6bca1673fc5b66a"},
1027
+ {file = "ruff-0.4.8-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:fc95aac2943ddf360376be9aa3107c8cf9640083940a8c5bd824be692d2216dc"},
1028
+ {file = "ruff-0.4.8-py3-none-musllinux_1_2_i686.whl", hash = "sha256:384154a1c3f4bf537bac69f33720957ee49ac8d484bfc91720cc94172026ceed"},
1029
+ {file = "ruff-0.4.8-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:e9d5ce97cacc99878aa0d084c626a15cd21e6b3d53fd6f9112b7fc485918e1fa"},
1030
+ {file = "ruff-0.4.8-py3-none-win32.whl", hash = "sha256:6d795d7639212c2dfd01991259460101c22aabf420d9b943f153ab9d9706e6a9"},
1031
+ {file = "ruff-0.4.8-py3-none-win_amd64.whl", hash = "sha256:e14a3a095d07560a9d6769a72f781d73259655919d9b396c650fc98a8157555d"},
1032
+ {file = "ruff-0.4.8-py3-none-win_arm64.whl", hash = "sha256:14019a06dbe29b608f6b7cbcec300e3170a8d86efaddb7b23405cb7f7dcaf780"},
1033
+ {file = "ruff-0.4.8.tar.gz", hash = "sha256:16d717b1d57b2e2fd68bd0bf80fb43931b79d05a7131aa477d66fc40fbd86268"},
1034
+ ]
1035
+
1036
+ [[package]]
1037
+ name = "semantic-version"
1038
+ version = "2.10.0"
1039
+ requires_python = ">=2.7"
1040
+ summary = "A library implementing the 'SemVer' scheme."
1041
+ groups = ["default"]
1042
+ files = [
1043
+ {file = "semantic_version-2.10.0-py2.py3-none-any.whl", hash = "sha256:de78a3b8e0feda74cabc54aab2da702113e33ac9d9eb9d2389bcf1f58b7d9177"},
1044
+ {file = "semantic_version-2.10.0.tar.gz", hash = "sha256:bdabb6d336998cbb378d4b9db3a4b56a1e3235701dc05ea2690d9a997ed5041c"},
1045
+ ]
1046
+
1047
+ [[package]]
1048
+ name = "shellingham"
1049
+ version = "1.5.4"
1050
+ requires_python = ">=3.7"
1051
+ summary = "Tool to Detect Surrounding Shell"
1052
+ groups = ["default"]
1053
+ files = [
1054
+ {file = "shellingham-1.5.4-py2.py3-none-any.whl", hash = "sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686"},
1055
+ {file = "shellingham-1.5.4.tar.gz", hash = "sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de"},
1056
+ ]
1057
+
1058
+ [[package]]
1059
+ name = "six"
1060
+ version = "1.16.0"
1061
+ requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
1062
+ summary = "Python 2 and 3 compatibility utilities"
1063
+ groups = ["default"]
1064
+ files = [
1065
+ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
1066
+ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
1067
+ ]
1068
+
1069
+ [[package]]
1070
+ name = "sniffio"
1071
+ version = "1.3.1"
1072
+ requires_python = ">=3.7"
1073
+ summary = "Sniff out which async library your code is running under"
1074
+ groups = ["default"]
1075
+ files = [
1076
+ {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"},
1077
+ {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"},
1078
+ ]
1079
+
1080
+ [[package]]
1081
+ name = "starlette"
1082
+ version = "0.37.2"
1083
+ requires_python = ">=3.8"
1084
+ summary = "The little ASGI library that shines."
1085
+ groups = ["default"]
1086
+ dependencies = [
1087
+ "anyio<5,>=3.4.0",
1088
+ ]
1089
+ files = [
1090
+ {file = "starlette-0.37.2-py3-none-any.whl", hash = "sha256:6fe59f29268538e5d0d182f2791a479a0c64638e6935d1c6989e63fb2699c6ee"},
1091
+ {file = "starlette-0.37.2.tar.gz", hash = "sha256:9af890290133b79fc3db55474ade20f6220a364a0402e0b556e7cd5e1e093823"},
1092
+ ]
1093
+
1094
+ [[package]]
1095
+ name = "tomlkit"
1096
+ version = "0.12.0"
1097
+ requires_python = ">=3.7"
1098
+ summary = "Style preserving TOML library"
1099
+ groups = ["default"]
1100
+ files = [
1101
+ {file = "tomlkit-0.12.0-py3-none-any.whl", hash = "sha256:926f1f37a1587c7a4f6c7484dae538f1345d96d793d9adab5d3675957b1d0766"},
1102
+ {file = "tomlkit-0.12.0.tar.gz", hash = "sha256:01f0477981119c7d8ee0f67ebe0297a7c95b14cf9f4b102b45486deb77018716"},
1103
+ ]
1104
+
1105
+ [[package]]
1106
+ name = "toolz"
1107
+ version = "0.12.1"
1108
+ requires_python = ">=3.7"
1109
+ summary = "List processing tools and functional utilities"
1110
+ groups = ["default"]
1111
+ files = [
1112
+ {file = "toolz-0.12.1-py3-none-any.whl", hash = "sha256:d22731364c07d72eea0a0ad45bafb2c2937ab6fd38a3507bf55eae8744aa7d85"},
1113
+ {file = "toolz-0.12.1.tar.gz", hash = "sha256:ecca342664893f177a13dac0e6b41cbd8ac25a358e5f215316d43e2100224f4d"},
1114
+ ]
1115
+
1116
+ [[package]]
1117
+ name = "tqdm"
1118
+ version = "4.66.4"
1119
+ requires_python = ">=3.7"
1120
+ summary = "Fast, Extensible Progress Meter"
1121
+ groups = ["default"]
1122
+ dependencies = [
1123
+ "colorama; platform_system == \"Windows\"",
1124
+ ]
1125
+ files = [
1126
+ {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"},
1127
+ {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"},
1128
+ ]
1129
+
1130
+ [[package]]
1131
+ name = "typer"
1132
+ version = "0.12.3"
1133
+ requires_python = ">=3.7"
1134
+ summary = "Typer, build great CLIs. Easy to code. Based on Python type hints."
1135
+ groups = ["default"]
1136
+ dependencies = [
1137
+ "click>=8.0.0",
1138
+ "rich>=10.11.0",
1139
+ "shellingham>=1.3.0",
1140
+ "typing-extensions>=3.7.4.3",
1141
+ ]
1142
+ files = [
1143
+ {file = "typer-0.12.3-py3-none-any.whl", hash = "sha256:070d7ca53f785acbccba8e7d28b08dcd88f79f1fbda035ade0aecec71ca5c914"},
1144
+ {file = "typer-0.12.3.tar.gz", hash = "sha256:49e73131481d804288ef62598d97a1ceef3058905aa536a1134f90891ba35482"},
1145
+ ]
1146
+
1147
+ [[package]]
1148
+ name = "typing-extensions"
1149
+ version = "4.12.2"
1150
+ requires_python = ">=3.8"
1151
+ summary = "Backported and Experimental Type Hints for Python 3.8+"
1152
+ groups = ["default"]
1153
+ files = [
1154
+ {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"},
1155
+ {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
1156
+ ]
1157
+
1158
+ [[package]]
1159
+ name = "tzdata"
1160
+ version = "2024.1"
1161
+ requires_python = ">=2"
1162
+ summary = "Provider of IANA time zone data"
1163
+ groups = ["default"]
1164
+ files = [
1165
+ {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"},
1166
+ {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"},
1167
+ ]
1168
+
1169
+ [[package]]
1170
+ name = "tzlocal"
1171
+ version = "5.2"
1172
+ requires_python = ">=3.8"
1173
+ summary = "tzinfo object for the local timezone"
1174
+ groups = ["default"]
1175
+ dependencies = [
1176
+ "tzdata; platform_system == \"Windows\"",
1177
+ ]
1178
+ files = [
1179
+ {file = "tzlocal-5.2-py3-none-any.whl", hash = "sha256:49816ef2fe65ea8ac19d19aa7a1ae0551c834303d5014c6d5a62e4cbda8047b8"},
1180
+ {file = "tzlocal-5.2.tar.gz", hash = "sha256:8d399205578f1a9342816409cc1e46a93ebd5755e39ea2d85334bea911bf0e6e"},
1181
+ ]
1182
+
1183
+ [[package]]
1184
+ name = "ujson"
1185
+ version = "5.10.0"
1186
+ requires_python = ">=3.8"
1187
+ summary = "Ultra fast JSON encoder and decoder for Python"
1188
+ groups = ["default"]
1189
+ files = [
1190
+ {file = "ujson-5.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2601aa9ecdbee1118a1c2065323bda35e2c5a2cf0797ef4522d485f9d3ef65bd"},
1191
+ {file = "ujson-5.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:348898dd702fc1c4f1051bc3aacbf894caa0927fe2c53e68679c073375f732cf"},
1192
+ {file = "ujson-5.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22cffecf73391e8abd65ef5f4e4dd523162a3399d5e84faa6aebbf9583df86d6"},
1193
+ {file = "ujson-5.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26b0e2d2366543c1bb4fbd457446f00b0187a2bddf93148ac2da07a53fe51569"},
1194
+ {file = "ujson-5.10.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:caf270c6dba1be7a41125cd1e4fc7ba384bf564650beef0df2dd21a00b7f5770"},
1195
+ {file = "ujson-5.10.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a245d59f2ffe750446292b0094244df163c3dc96b3ce152a2c837a44e7cda9d1"},
1196
+ {file = "ujson-5.10.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:94a87f6e151c5f483d7d54ceef83b45d3a9cca7a9cb453dbdbb3f5a6f64033f5"},
1197
+ {file = "ujson-5.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:29b443c4c0a113bcbb792c88bea67b675c7ca3ca80c3474784e08bba01c18d51"},
1198
+ {file = "ujson-5.10.0-cp310-cp310-win32.whl", hash = "sha256:c18610b9ccd2874950faf474692deee4223a994251bc0a083c114671b64e6518"},
1199
+ {file = "ujson-5.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:924f7318c31874d6bb44d9ee1900167ca32aa9b69389b98ecbde34c1698a250f"},
1200
+ {file = "ujson-5.10.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5b6fee72fa77dc172a28f21693f64d93166534c263adb3f96c413ccc85ef6e64"},
1201
+ {file = "ujson-5.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:61d0af13a9af01d9f26d2331ce49bb5ac1fb9c814964018ac8df605b5422dcb3"},
1202
+ {file = "ujson-5.10.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ecb24f0bdd899d368b715c9e6664166cf694d1e57be73f17759573a6986dd95a"},
1203
+ {file = "ujson-5.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fbd8fd427f57a03cff3ad6574b5e299131585d9727c8c366da4624a9069ed746"},
1204
+ {file = "ujson-5.10.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:beeaf1c48e32f07d8820c705ff8e645f8afa690cca1544adba4ebfa067efdc88"},
1205
+ {file = "ujson-5.10.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:baed37ea46d756aca2955e99525cc02d9181de67f25515c468856c38d52b5f3b"},
1206
+ {file = "ujson-5.10.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:7663960f08cd5a2bb152f5ee3992e1af7690a64c0e26d31ba7b3ff5b2ee66337"},
1207
+ {file = "ujson-5.10.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:d8640fb4072d36b08e95a3a380ba65779d356b2fee8696afeb7794cf0902d0a1"},
1208
+ {file = "ujson-5.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78778a3aa7aafb11e7ddca4e29f46bc5139131037ad628cc10936764282d6753"},
1209
+ {file = "ujson-5.10.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b0111b27f2d5c820e7f2dbad7d48e3338c824e7ac4d2a12da3dc6061cc39c8e6"},
1210
+ {file = "ujson-5.10.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:c66962ca7565605b355a9ed478292da628b8f18c0f2793021ca4425abf8b01e5"},
1211
+ {file = "ujson-5.10.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ba43cc34cce49cf2d4bc76401a754a81202d8aa926d0e2b79f0ee258cb15d3a4"},
1212
+ {file = "ujson-5.10.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ac56eb983edce27e7f51d05bc8dd820586c6e6be1c5216a6809b0c668bb312b8"},
1213
+ {file = "ujson-5.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f44bd4b23a0e723bf8b10628288c2c7c335161d6840013d4d5de20e48551773b"},
1214
+ {file = "ujson-5.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c10f4654e5326ec14a46bcdeb2b685d4ada6911050aa8baaf3501e57024b804"},
1215
+ {file = "ujson-5.10.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0de4971a89a762398006e844ae394bd46991f7c385d7a6a3b93ba229e6dac17e"},
1216
+ {file = "ujson-5.10.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:e1402f0564a97d2a52310ae10a64d25bcef94f8dd643fcf5d310219d915484f7"},
1217
+ {file = "ujson-5.10.0.tar.gz", hash = "sha256:b3cd8f3c5d8c7738257f1018880444f7b7d9b66232c64649f562d7ba86ad4bc1"},
1218
+ ]
1219
+
1220
+ [[package]]
1221
+ name = "urllib3"
1222
+ version = "2.2.1"
1223
+ requires_python = ">=3.8"
1224
+ summary = "HTTP library with thread-safe connection pooling, file post, and more."
1225
+ groups = ["default"]
1226
+ files = [
1227
+ {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"},
1228
+ {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"},
1229
+ ]
1230
+
1231
+ [[package]]
1232
+ name = "uvicorn"
1233
+ version = "0.30.1"
1234
+ requires_python = ">=3.8"
1235
+ summary = "The lightning-fast ASGI server."
1236
+ groups = ["default"]
1237
+ dependencies = [
1238
+ "click>=7.0",
1239
+ "h11>=0.8",
1240
+ "typing-extensions>=4.0; python_version < \"3.11\"",
1241
+ ]
1242
+ files = [
1243
+ {file = "uvicorn-0.30.1-py3-none-any.whl", hash = "sha256:cd17daa7f3b9d7a24de3617820e634d0933b69eed8e33a516071174427238c81"},
1244
+ {file = "uvicorn-0.30.1.tar.gz", hash = "sha256:d46cd8e0fd80240baffbcd9ec1012a712938754afcf81bce56c024c1656aece8"},
1245
+ ]
1246
+
1247
+ [[package]]
1248
+ name = "uvicorn"
1249
+ version = "0.30.1"
1250
+ extras = ["standard"]
1251
+ requires_python = ">=3.8"
1252
+ summary = "The lightning-fast ASGI server."
1253
+ groups = ["default"]
1254
+ dependencies = [
1255
+ "colorama>=0.4; sys_platform == \"win32\"",
1256
+ "httptools>=0.5.0",
1257
+ "python-dotenv>=0.13",
1258
+ "pyyaml>=5.1",
1259
+ "uvicorn==0.30.1",
1260
+ "uvloop!=0.15.0,!=0.15.1,>=0.14.0; (sys_platform != \"cygwin\" and sys_platform != \"win32\") and platform_python_implementation != \"PyPy\"",
1261
+ "watchfiles>=0.13",
1262
+ "websockets>=10.4",
1263
+ ]
1264
+ files = [
1265
+ {file = "uvicorn-0.30.1-py3-none-any.whl", hash = "sha256:cd17daa7f3b9d7a24de3617820e634d0933b69eed8e33a516071174427238c81"},
1266
+ {file = "uvicorn-0.30.1.tar.gz", hash = "sha256:d46cd8e0fd80240baffbcd9ec1012a712938754afcf81bce56c024c1656aece8"},
1267
+ ]
1268
+
1269
+ [[package]]
1270
+ name = "uvloop"
1271
+ version = "0.19.0"
1272
+ requires_python = ">=3.8.0"
1273
+ summary = "Fast implementation of asyncio event loop on top of libuv"
1274
+ groups = ["default"]
1275
+ marker = "(sys_platform != \"cygwin\" and sys_platform != \"win32\") and platform_python_implementation != \"PyPy\""
1276
+ files = [
1277
+ {file = "uvloop-0.19.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:de4313d7f575474c8f5a12e163f6d89c0a878bc49219641d49e6f1444369a90e"},
1278
+ {file = "uvloop-0.19.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5588bd21cf1fcf06bded085f37e43ce0e00424197e7c10e77afd4bbefffef428"},
1279
+ {file = "uvloop-0.19.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b1fd71c3843327f3bbc3237bedcdb6504fd50368ab3e04d0410e52ec293f5b8"},
1280
+ {file = "uvloop-0.19.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a05128d315e2912791de6088c34136bfcdd0c7cbc1cf85fd6fd1bb321b7c849"},
1281
+ {file = "uvloop-0.19.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:cd81bdc2b8219cb4b2556eea39d2e36bfa375a2dd021404f90a62e44efaaf957"},
1282
+ {file = "uvloop-0.19.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5f17766fb6da94135526273080f3455a112f82570b2ee5daa64d682387fe0dcd"},
1283
+ {file = "uvloop-0.19.0.tar.gz", hash = "sha256:0246f4fd1bf2bf702e06b0d45ee91677ee5c31242f39aab4ea6fe0c51aedd0fd"},
1284
+ ]
1285
+
1286
+ [[package]]
1287
+ name = "watchfiles"
1288
+ version = "0.22.0"
1289
+ requires_python = ">=3.8"
1290
+ summary = "Simple, modern and high performance file watching and code reload in python."
1291
+ groups = ["default"]
1292
+ dependencies = [
1293
+ "anyio>=3.0.0",
1294
+ ]
1295
+ files = [
1296
+ {file = "watchfiles-0.22.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:da1e0a8caebf17976e2ffd00fa15f258e14749db5e014660f53114b676e68538"},
1297
+ {file = "watchfiles-0.22.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:61af9efa0733dc4ca462347becb82e8ef4945aba5135b1638bfc20fad64d4f0e"},
1298
+ {file = "watchfiles-0.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d9188979a58a096b6f8090e816ccc3f255f137a009dd4bbec628e27696d67c1"},
1299
+ {file = "watchfiles-0.22.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2bdadf6b90c099ca079d468f976fd50062905d61fae183f769637cb0f68ba59a"},
1300
+ {file = "watchfiles-0.22.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:067dea90c43bf837d41e72e546196e674f68c23702d3ef80e4e816937b0a3ffd"},
1301
+ {file = "watchfiles-0.22.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbf8a20266136507abf88b0df2328e6a9a7c7309e8daff124dda3803306a9fdb"},
1302
+ {file = "watchfiles-0.22.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1235c11510ea557fe21be5d0e354bae2c655a8ee6519c94617fe63e05bca4171"},
1303
+ {file = "watchfiles-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2444dc7cb9d8cc5ab88ebe792a8d75709d96eeef47f4c8fccb6df7c7bc5be71"},
1304
+ {file = "watchfiles-0.22.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c5af2347d17ab0bd59366db8752d9e037982e259cacb2ba06f2c41c08af02c39"},
1305
+ {file = "watchfiles-0.22.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9624a68b96c878c10437199d9a8b7d7e542feddda8d5ecff58fdc8e67b460848"},
1306
+ {file = "watchfiles-0.22.0-cp310-none-win32.whl", hash = "sha256:4b9f2a128a32a2c273d63eb1fdbf49ad64852fc38d15b34eaa3f7ca2f0d2b797"},
1307
+ {file = "watchfiles-0.22.0-cp310-none-win_amd64.whl", hash = "sha256:2627a91e8110b8de2406d8b2474427c86f5a62bf7d9ab3654f541f319ef22bcb"},
1308
+ {file = "watchfiles-0.22.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b810a2c7878cbdecca12feae2c2ae8af59bea016a78bc353c184fa1e09f76b68"},
1309
+ {file = "watchfiles-0.22.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7e1f9c5d1160d03b93fc4b68a0aeb82fe25563e12fbcdc8507f8434ab6f823c"},
1310
+ {file = "watchfiles-0.22.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:030bc4e68d14bcad2294ff68c1ed87215fbd9a10d9dea74e7cfe8a17869785ab"},
1311
+ {file = "watchfiles-0.22.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ace7d060432acde5532e26863e897ee684780337afb775107c0a90ae8dbccfd2"},
1312
+ {file = "watchfiles-0.22.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5834e1f8b71476a26df97d121c0c0ed3549d869124ed2433e02491553cb468c2"},
1313
+ {file = "watchfiles-0.22.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:0bc3b2f93a140df6806c8467c7f51ed5e55a931b031b5c2d7ff6132292e803d6"},
1314
+ {file = "watchfiles-0.22.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8fdebb655bb1ba0122402352b0a4254812717a017d2dc49372a1d47e24073795"},
1315
+ {file = "watchfiles-0.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c8e0aa0e8cc2a43561e0184c0513e291ca891db13a269d8d47cb9841ced7c71"},
1316
+ {file = "watchfiles-0.22.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:2f350cbaa4bb812314af5dab0eb8d538481e2e2279472890864547f3fe2281ed"},
1317
+ {file = "watchfiles-0.22.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:7a74436c415843af2a769b36bf043b6ccbc0f8d784814ba3d42fc961cdb0a9dc"},
1318
+ {file = "watchfiles-0.22.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00ad0bcd399503a84cc688590cdffbe7a991691314dde5b57b3ed50a41319a31"},
1319
+ {file = "watchfiles-0.22.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72a44e9481afc7a5ee3291b09c419abab93b7e9c306c9ef9108cb76728ca58d2"},
1320
+ {file = "watchfiles-0.22.0.tar.gz", hash = "sha256:988e981aaab4f3955209e7e28c7794acdb690be1efa7f16f8ea5aba7ffdadacb"},
1321
+ ]
1322
+
1323
+ [[package]]
1324
+ name = "websockets"
1325
+ version = "11.0.3"
1326
+ requires_python = ">=3.7"
1327
+ summary = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)"
1328
+ groups = ["default"]
1329
+ files = [
1330
+ {file = "websockets-11.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3ccc8a0c387629aec40f2fc9fdcb4b9d5431954f934da3eaf16cdc94f67dbfac"},
1331
+ {file = "websockets-11.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d67ac60a307f760c6e65dad586f556dde58e683fab03323221a4e530ead6f74d"},
1332
+ {file = "websockets-11.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:84d27a4832cc1a0ee07cdcf2b0629a8a72db73f4cf6de6f0904f6661227f256f"},
1333
+ {file = "websockets-11.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffd7dcaf744f25f82190856bc26ed81721508fc5cbf2a330751e135ff1283564"},
1334
+ {file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7622a89d696fc87af8e8d280d9b421db5133ef5b29d3f7a1ce9f1a7bf7fcfa11"},
1335
+ {file = "websockets-11.0.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bceab846bac555aff6427d060f2fcfff71042dba6f5fca7dc4f75cac815e57ca"},
1336
+ {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:54c6e5b3d3a8936a4ab6870d46bdd6ec500ad62bde9e44462c32d18f1e9a8e54"},
1337
+ {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:41f696ba95cd92dc047e46b41b26dd24518384749ed0d99bea0a941ca87404c4"},
1338
+ {file = "websockets-11.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:86d2a77fd490ae3ff6fae1c6ceaecad063d3cc2320b44377efdde79880e11526"},
1339
+ {file = "websockets-11.0.3-cp310-cp310-win32.whl", hash = "sha256:2d903ad4419f5b472de90cd2d40384573b25da71e33519a67797de17ef849b69"},
1340
+ {file = "websockets-11.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:1d2256283fa4b7f4c7d7d3e84dc2ece74d341bce57d5b9bf385df109c2a1a82f"},
1341
+ {file = "websockets-11.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f2e58f2c36cc52d41f2659e4c0cbf7353e28c8c9e63e30d8c6d3494dc9fdedcf"},
1342
+ {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de36fe9c02995c7e6ae6efe2e205816f5f00c22fd1fbf343d4d18c3d5ceac2f5"},
1343
+ {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ac56b661e60edd453585f4bd68eb6a29ae25b5184fd5ba51e97652580458998"},
1344
+ {file = "websockets-11.0.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e052b8467dd07d4943936009f46ae5ce7b908ddcac3fda581656b1b19c083d9b"},
1345
+ {file = "websockets-11.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:42cc5452a54a8e46a032521d7365da775823e21bfba2895fb7b77633cce031bb"},
1346
+ {file = "websockets-11.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e6316827e3e79b7b8e7d8e3b08f4e331af91a48e794d5d8b099928b6f0b85f20"},
1347
+ {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8531fdcad636d82c517b26a448dcfe62f720e1922b33c81ce695d0edb91eb931"},
1348
+ {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c114e8da9b475739dde229fd3bc6b05a6537a88a578358bc8eb29b4030fac9c9"},
1349
+ {file = "websockets-11.0.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e063b1865974611313a3849d43f2c3f5368093691349cf3c7c8f8f75ad7cb280"},
1350
+ {file = "websockets-11.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:92b2065d642bf8c0a82d59e59053dd2fdde64d4ed44efe4870fa816c1232647b"},
1351
+ {file = "websockets-11.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0ee68fe502f9031f19d495dae2c268830df2760c0524cbac5d759921ba8c8e82"},
1352
+ {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcacf2c7a6c3a84e720d1bb2b543c675bf6c40e460300b628bab1b1efc7c034c"},
1353
+ {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b67c6f5e5a401fc56394f191f00f9b3811fe843ee93f4a70df3c389d1adf857d"},
1354
+ {file = "websockets-11.0.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d5023a4b6a5b183dc838808087033ec5df77580485fc533e7dab2567851b0a4"},
1355
+ {file = "websockets-11.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ed058398f55163a79bb9f06a90ef9ccc063b204bb346c4de78efc5d15abfe602"},
1356
+ {file = "websockets-11.0.3-py3-none-any.whl", hash = "sha256:6681ba9e7f8f3b19440921e99efbb40fc89f26cd71bf539e45d8c8a25c976dc6"},
1357
+ {file = "websockets-11.0.3.tar.gz", hash = "sha256:88fc51d9a26b10fc331be344f1781224a375b78488fc343620184e95a4b27016"},
1358
+ ]
pyproject.toml CHANGED
@@ -1,13 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  [tool.ruff]
 
 
 
 
 
 
2
  # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
- select = ["E", "F"]
4
- ignore = ["E501"] # line too long (black is taking care of this)
5
- line-length = 119
 
 
 
 
 
 
 
6
  fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
-
8
- [tool.isort]
9
- profile = "black"
10
- line_length = 119
11
-
12
- [tool.black]
13
- line-length = 119
 
1
+ [project]
2
+ name = "Encodechka"
3
+ version = "0.1.0"
4
+ description = "Default template for PDM package"
5
+ authors = [
6
+ {name = "Roman Solomatin", email = "[email protected]"},
7
+ ]
8
+ dependencies = [
9
+ "APScheduler>=3.10.4",
10
+ # "black",
11
+ "click>=8.1.7",
12
+ # "datasets",
13
+ "gradio>=4.36.1",
14
+ "gradio-client>=1.0.1",
15
+ "huggingface-hub>=0.18.0",
16
+ "matplotlib>=3.9.0",
17
+ "numpy>=1.26.4",
18
+ "pandas>=2.2.2",
19
+ "python-dateutil>=2.9.0.post0",
20
+ "requests>=2.32.3",
21
+ "tqdm>=4.66.4",
22
+ # "transformers",
23
+ # "tokenizers>=0.15.0",
24
+ # "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463",
25
+ # "accelerate",
26
+ # "sentencepiece",
27
+ ]
28
+ requires-python = "==3.10.*"
29
+ readme = "README.md"
30
+ license = {text = "MIT"}
31
+
32
+ [tool.pdm]
33
+ distribution = false
34
+
35
+ [tool.pdm.dev-dependencies]
36
+ lint = [
37
+ "ruff>=0.4.8",
38
+ ]
39
+
40
+
41
  [tool.ruff]
42
+ fix = true
43
+ target-version = "py310"
44
+ line-length = 120
45
+ extend-include = ["*.ipynb"]
46
+
47
+ [tool.ruff.lint]
48
  # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
49
+ select= [
50
+ "E", # pycodestyle errors
51
+ "W", # pycodestyle warnings
52
+ "F", # pyflakes
53
+ "I", # isort
54
+ "B", # flake8-bugbear
55
+ "UP", # pyupgrade
56
+ "RUF", # ruff
57
+ #"D", # pydocstyle
58
+ ]
59
  fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,18 +1,540 @@
1
- APScheduler
2
- black
3
- click
4
- datasets
5
- gradio
6
- gradio_client
7
- huggingface-hub>=0.18.0
8
- matplotlib
9
- numpy
10
- pandas
11
- python-dateutil
12
- requests
13
- tqdm
14
- transformers
15
- tokenizers>=0.15.0
16
- git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
17
- accelerate
18
- sentencepiece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is @generated by PDM.
2
+ # Please do not edit it manually.
3
+
4
+ aiofiles==23.2.1 \
5
+ --hash=sha256:19297512c647d4b27a2cf7c34caa7e405c0d60b5560618a29a9fe027b18b0107 \
6
+ --hash=sha256:84ec2218d8419404abcb9f0c02df3f34c6e0a68ed41072acfb1cef5cbc29051a
7
+ altair==5.3.0 \
8
+ --hash=sha256:5a268b1a0983b23d8f9129f819f956174aa7aea2719ed55a52eba9979b9f6675 \
9
+ --hash=sha256:7084a1dab4d83c5e7e5246b92dc1b4451a6c68fd057f3716ee9d315c8980e59a
10
+ annotated-types==0.7.0 \
11
+ --hash=sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53 \
12
+ --hash=sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89
13
+ anyio==4.4.0 \
14
+ --hash=sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94 \
15
+ --hash=sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7
16
+ apscheduler==3.10.4 \
17
+ --hash=sha256:e6df071b27d9be898e486bc7940a7be50b4af2e9da7c08f0744a96d4bd4cef4a \
18
+ --hash=sha256:fb91e8a768632a4756a585f79ec834e0e27aad5860bac7eaa523d9ccefd87661
19
+ attrs==23.2.0 \
20
+ --hash=sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30 \
21
+ --hash=sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1
22
+ certifi==2024.6.2 \
23
+ --hash=sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516 \
24
+ --hash=sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56
25
+ charset-normalizer==3.3.2 \
26
+ --hash=sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027 \
27
+ --hash=sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09 \
28
+ --hash=sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e \
29
+ --hash=sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3 \
30
+ --hash=sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f \
31
+ --hash=sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73 \
32
+ --hash=sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc \
33
+ --hash=sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269 \
34
+ --hash=sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d \
35
+ --hash=sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5 \
36
+ --hash=sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03 \
37
+ --hash=sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537 \
38
+ --hash=sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c \
39
+ --hash=sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6 \
40
+ --hash=sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12 \
41
+ --hash=sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5 \
42
+ --hash=sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519
43
+ click==8.1.7 \
44
+ --hash=sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28 \
45
+ --hash=sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de
46
+ colorama==0.4.6; platform_system == "Windows" or sys_platform == "win32" \
47
+ --hash=sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44 \
48
+ --hash=sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6
49
+ contourpy==1.2.1 \
50
+ --hash=sha256:11959f0ce4a6f7b76ec578576a0b61a28bdc0696194b6347ba3f1c53827178b9 \
51
+ --hash=sha256:39f3ecaf76cd98e802f094e0d4fbc6dc9c45a8d0c4d185f0f6c2234e14e5f75b \
52
+ --hash=sha256:457499c79fa84593f22454bbd27670227874cd2ff5d6c84e60575c8b50a69619 \
53
+ --hash=sha256:4c75507d0a55378240f781599c30e7776674dbaf883a46d1c90f37e563453480 \
54
+ --hash=sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c \
55
+ --hash=sha256:5b9eb0ca724a241683c9685a484da9d35c872fd42756574a7cfbf58af26677fd \
56
+ --hash=sha256:94b34f32646ca0414237168d68a9157cb3889f06b096612afdd296003fdd32fd \
57
+ --hash=sha256:9cffe0f850e89d7c0012a1fb8730f75edd4320a0a731ed0c183904fe6ecfc3a9 \
58
+ --hash=sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609 \
59
+ --hash=sha256:ac58bdee53cbeba2ecad824fa8159493f0bf3b8ea4e93feb06c9a465d6c87da8 \
60
+ --hash=sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f \
61
+ --hash=sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040 \
62
+ --hash=sha256:eb3315a8a236ee19b6df481fc5f997436e8ade24a9f03dfdc6bd490fea20c6da \
63
+ --hash=sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3
64
+ cycler==0.12.1 \
65
+ --hash=sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 \
66
+ --hash=sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c
67
+ dnspython==2.6.1 \
68
+ --hash=sha256:5ef3b9680161f6fa89daf8ad451b5f1a33b18ae8a1c6778cdf4b43f08c0a6e50 \
69
+ --hash=sha256:e8f0f9c23a7b7cb99ded64e6c3a6f3e701d78f50c55e002b839dea7225cff7cc
70
+ email-validator==2.1.1 \
71
+ --hash=sha256:200a70680ba08904be6d1eef729205cc0d687634399a5924d842533efb824b84 \
72
+ --hash=sha256:97d882d174e2a65732fb43bfce81a3a834cbc1bde8bf419e30ef5ea976370a05
73
+ exceptiongroup==1.2.1; python_version < "3.11" \
74
+ --hash=sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad \
75
+ --hash=sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16
76
+ fastapi==0.111.0 \
77
+ --hash=sha256:97ecbf994be0bcbdadedf88c3150252bed7b2087075ac99735403b1b76cc8fc0 \
78
+ --hash=sha256:b9db9dd147c91cb8b769f7183535773d8741dd46f9dc6676cd82eab510228cd7
79
+ fastapi-cli==0.0.4 \
80
+ --hash=sha256:a2552f3a7ae64058cdbb530be6fa6dbfc975dc165e4fa66d224c3d396e25e809 \
81
+ --hash=sha256:e2e9ffaffc1f7767f488d6da34b6f5a377751c996f397902eb6abb99a67bde32
82
+ ffmpy==0.3.2 \
83
+ --hash=sha256:475ebfff1044661b8d969349dbcd2db9bf56d3ee78c0627e324769b49a27a78f
84
+ filelock==3.15.1 \
85
+ --hash=sha256:58a2549afdf9e02e10720eaa4d4470f56386d7a6f72edd7d0596337af8ed7ad8 \
86
+ --hash=sha256:71b3102950e91dfc1bb4209b64be4dc8854f40e5f534428d8684f953ac847fac
87
+ fonttools==4.53.0 \
88
+ --hash=sha256:099634631b9dd271d4a835d2b2a9e042ccc94ecdf7e2dd9f7f34f7daf333358d \
89
+ --hash=sha256:52a6e0a7a0bf611c19bc8ec8f7592bdae79c8296c70eb05917fd831354699b20 \
90
+ --hash=sha256:6b4f04b1fbc01a3569d63359f2227c89ab294550de277fd09d8fca6185669fa4 \
91
+ --hash=sha256:715b41c3e231f7334cbe79dfc698213dcb7211520ec7a3bc2ba20c8515e8a3b5 \
92
+ --hash=sha256:74ae2441731a05b44d5988d3ac2cf784d3ee0a535dbed257cbfff4be8bb49eb9 \
93
+ --hash=sha256:95db0c6581a54b47c30860d013977b8a14febc206c8b5ff562f9fe32738a8aca \
94
+ --hash=sha256:9cd7a6beec6495d1dffb1033d50a3f82dfece23e9eb3c20cd3c2444d27514068 \
95
+ --hash=sha256:c93ed66d32de1559b6fc348838c7572d5c0ac1e4a258e76763a5caddd8944002 \
96
+ --hash=sha256:daaef7390e632283051e3cf3e16aff2b68b247e99aea916f64e578c0449c9c68 \
97
+ --hash=sha256:e40013572bfb843d6794a3ce076c29ef4efd15937ab833f520117f8eccc84fd6
98
+ fsspec==2024.6.0 \
99
+ --hash=sha256:58d7122eb8a1a46f7f13453187bfea4972d66bf01618d37366521b1998034cee \
100
+ --hash=sha256:f579960a56e6d8038a9efc8f9c77279ec12e6299aa86b0769a7e9c46b94527c2
101
+ gradio==4.36.1 \
102
+ --hash=sha256:31edb504c88c1db06c08daf750dcdaa072087ada59aa4ff83c1a3f4c2075912d \
103
+ --hash=sha256:72b2d21156d3467123bae6f30f463f002ef06e272766274308f5ed3cac37563b
104
+ gradio-client==1.0.1 \
105
+ --hash=sha256:b3fa4d1c626067cc866d6172caa75d373e114bacfba650e49e293646d786646a \
106
+ --hash=sha256:fe3f527349ac38cbc5deb6d629a15c06fa3b4a68d1e04dc5ca9fbb1896318629
107
+ h11==0.14.0 \
108
+ --hash=sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d \
109
+ --hash=sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761
110
+ httpcore==1.0.5 \
111
+ --hash=sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61 \
112
+ --hash=sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5
113
+ httptools==0.6.1 \
114
+ --hash=sha256:00d5d4b68a717765b1fabfd9ca755bd12bf44105eeb806c03d1962acd9b8e563 \
115
+ --hash=sha256:0ac5a0ae3d9f4fe004318d64b8a854edd85ab76cffbf7ef5e32920faef62f142 \
116
+ --hash=sha256:1ed99a373e327f0107cb513b61820102ee4f3675656a37a50083eda05dc9541b \
117
+ --hash=sha256:3f30d3ce413088a98b9db71c60a6ada2001a08945cb42dd65a9a9fe228627658 \
118
+ --hash=sha256:639dc4f381a870c9ec860ce5c45921db50205a37cc3334e756269736ff0aac58 \
119
+ --hash=sha256:c6e26c30455600b95d94b1b836085138e82f177351454ee841c148f93a9bad5a \
120
+ --hash=sha256:d2f6c3c4cb1948d912538217838f6e9960bc4a521d7f9b323b3da579cd14532f \
121
+ --hash=sha256:e57997ac7fb7ee43140cc03664de5f268813a481dff6245e0075925adc6aa185
122
+ httpx==0.27.0 \
123
+ --hash=sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5 \
124
+ --hash=sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5
125
+ huggingface-hub==0.23.3 \
126
+ --hash=sha256:1a1118a0b3dea3bab6c325d71be16f5ffe441d32f3ac7c348d6875911b694b5b \
127
+ --hash=sha256:22222c41223f1b7c209ae5511d2d82907325a0e3cdbce5f66949d43c598ff3bc
128
+ idna==3.7 \
129
+ --hash=sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc \
130
+ --hash=sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0
131
+ importlib-resources==6.4.0 \
132
+ --hash=sha256:50d10f043df931902d4194ea07ec57960f66a80449ff867bfe782b4c486ba78c \
133
+ --hash=sha256:cdb2b453b8046ca4e3798eb1d84f3cce1446a0e8e7b5ef4efb600f19fc398145
134
+ jinja2==3.1.4 \
135
+ --hash=sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369 \
136
+ --hash=sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d
137
+ jsonschema==4.22.0 \
138
+ --hash=sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7 \
139
+ --hash=sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802
140
+ jsonschema-specifications==2023.12.1 \
141
+ --hash=sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc \
142
+ --hash=sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c
143
+ kiwisolver==1.4.5 \
144
+ --hash=sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af \
145
+ --hash=sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee \
146
+ --hash=sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3 \
147
+ --hash=sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b \
148
+ --hash=sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea \
149
+ --hash=sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c \
150
+ --hash=sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d \
151
+ --hash=sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a \
152
+ --hash=sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929 \
153
+ --hash=sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b \
154
+ --hash=sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920 \
155
+ --hash=sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544 \
156
+ --hash=sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390 \
157
+ --hash=sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4 \
158
+ --hash=sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770 \
159
+ --hash=sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525 \
160
+ --hash=sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad \
161
+ --hash=sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1 \
162
+ --hash=sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238 \
163
+ --hash=sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa \
164
+ --hash=sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523 \
165
+ --hash=sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4 \
166
+ --hash=sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd \
167
+ --hash=sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276 \
168
+ --hash=sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126 \
169
+ --hash=sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09 \
170
+ --hash=sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0 \
171
+ --hash=sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec \
172
+ --hash=sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7 \
173
+ --hash=sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff \
174
+ --hash=sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892
175
+ markdown-it-py==3.0.0 \
176
+ --hash=sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1 \
177
+ --hash=sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb
178
+ markupsafe==2.1.5 \
179
+ --hash=sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff \
180
+ --hash=sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f \
181
+ --hash=sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad \
182
+ --hash=sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5 \
183
+ --hash=sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc \
184
+ --hash=sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900 \
185
+ --hash=sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5 \
186
+ --hash=sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b \
187
+ --hash=sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4 \
188
+ --hash=sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46 \
189
+ --hash=sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd
190
+ matplotlib==3.9.0 \
191
+ --hash=sha256:13beb4840317d45ffd4183a778685e215939be7b08616f431c7795276e067463 \
192
+ --hash=sha256:290d304e59be2b33ef5c2d768d0237f5bd132986bdcc66f80bc9bcc300066a03 \
193
+ --hash=sha256:2bcee1dffaf60fe7656183ac2190bd630842ff87b3153afb3e384d966b57fe56 \
194
+ --hash=sha256:2e7f03e5cbbfacdd48c8ea394d365d91ee8f3cae7e6ec611409927b5ed997ee4 \
195
+ --hash=sha256:3f988bafb0fa39d1074ddd5bacd958c853e11def40800c5824556eb630f94d3b \
196
+ --hash=sha256:7ff2e239c26be4f24bfa45860c20ffccd118d270c5b5d081fa4ea409b5469fcd \
197
+ --hash=sha256:af4001b7cae70f7eaacfb063db605280058246de590fa7874f00f62259f2df7e \
198
+ --hash=sha256:bd4f2831168afac55b881db82a7730992aa41c4f007f1913465fb182d6fb20c0 \
199
+ --hash=sha256:e6d29ea6c19e34b30fb7d88b7081f869a03014f66fe06d62cc77d5a6ea88ed7a \
200
+ --hash=sha256:eaf3978060a106fab40c328778b148f590e27f6fa3cd15a19d6892575bce387d \
201
+ --hash=sha256:fe428e191ea016bb278758c8ee82a8129c51d81d8c4bc0846c09e7e8e9057241
202
+ mdurl==0.1.2 \
203
+ --hash=sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8 \
204
+ --hash=sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba
205
+ numpy==1.26.4 \
206
+ --hash=sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010 \
207
+ --hash=sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a \
208
+ --hash=sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a \
209
+ --hash=sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0 \
210
+ --hash=sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c \
211
+ --hash=sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0 \
212
+ --hash=sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2 \
213
+ --hash=sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30 \
214
+ --hash=sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5 \
215
+ --hash=sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07 \
216
+ --hash=sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4 \
217
+ --hash=sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f
218
+ orjson==3.10.4 \
219
+ --hash=sha256:02b192eaba048b1039eca9a0cef67863bd5623042f5c441889a9957121d97e14 \
220
+ --hash=sha256:1538844fb88446c42da3889f8c4ecce95a630b5a5ba18ecdfe5aea596f4dff21 \
221
+ --hash=sha256:42b112eff36ba7ccc7a9d6b87e17b9d6bde4312d05e3ddf66bf5662481dee846 \
222
+ --hash=sha256:827c3d0e4fc44242c82bfdb1a773235b8c0575afee99a9fa9a8ce920c14e440f \
223
+ --hash=sha256:8eaa5d531a8fde11993cbcb27e9acf7d9c457ba301adccb7fa3a021bfecab46c \
224
+ --hash=sha256:afca963f19ca60c7aedadea9979f769139127288dd58ccf3f7c5e8e6dc62cabf \
225
+ --hash=sha256:c912ed25b787c73fe994a5decd81c3f3b256599b8a87d410d799d5d52013af2a \
226
+ --hash=sha256:ca8ec09724f10ec209244caeb1f9f428b6bb03f2eda9ed5e2c4dd7f2b7fabd44 \
227
+ --hash=sha256:de02811903a2e434127fba5389c3cc90f689542339a6e52e691ab7f693407b5a \
228
+ --hash=sha256:e112aa7fc4ea67367ec5e86c39a6bb6c5719eddc8f999087b1759e765ddaf2d4
229
+ packaging==24.1 \
230
+ --hash=sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002 \
231
+ --hash=sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124
232
+ pandas==2.2.2 \
233
+ --hash=sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51 \
234
+ --hash=sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08 \
235
+ --hash=sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0 \
236
+ --hash=sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99 \
237
+ --hash=sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce \
238
+ --hash=sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54 \
239
+ --hash=sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238 \
240
+ --hash=sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772
241
+ pillow==10.3.0 \
242
+ --hash=sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2 \
243
+ --hash=sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3 \
244
+ --hash=sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a \
245
+ --hash=sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599 \
246
+ --hash=sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced \
247
+ --hash=sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355 \
248
+ --hash=sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf \
249
+ --hash=sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f \
250
+ --hash=sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9 \
251
+ --hash=sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45 \
252
+ --hash=sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d \
253
+ --hash=sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463 \
254
+ --hash=sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591 \
255
+ --hash=sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c \
256
+ --hash=sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32 \
257
+ --hash=sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf \
258
+ --hash=sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5 \
259
+ --hash=sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828 \
260
+ --hash=sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5 \
261
+ --hash=sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2 \
262
+ --hash=sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b \
263
+ --hash=sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475 \
264
+ --hash=sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3 \
265
+ --hash=sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015 \
266
+ --hash=sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170 \
267
+ --hash=sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f
268
+ pydantic==2.7.4 \
269
+ --hash=sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52 \
270
+ --hash=sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0
271
+ pydantic-core==2.18.4 \
272
+ --hash=sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc \
273
+ --hash=sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab \
274
+ --hash=sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e \
275
+ --hash=sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9 \
276
+ --hash=sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507 \
277
+ --hash=sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724 \
278
+ --hash=sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851 \
279
+ --hash=sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5 \
280
+ --hash=sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d \
281
+ --hash=sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef \
282
+ --hash=sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26 \
283
+ --hash=sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c \
284
+ --hash=sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0 \
285
+ --hash=sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4 \
286
+ --hash=sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d \
287
+ --hash=sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce \
288
+ --hash=sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d \
289
+ --hash=sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312 \
290
+ --hash=sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb \
291
+ --hash=sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a \
292
+ --hash=sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5 \
293
+ --hash=sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8 \
294
+ --hash=sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e \
295
+ --hash=sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc \
296
+ --hash=sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be \
297
+ --hash=sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee \
298
+ --hash=sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f \
299
+ --hash=sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864 \
300
+ --hash=sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4
301
+ pydub==0.25.1 \
302
+ --hash=sha256:65617e33033874b59d87db603aa1ed450633288aefead953b30bded59cb599a6 \
303
+ --hash=sha256:980a33ce9949cab2a569606b65674d748ecbca4f0796887fd6f46173a7b0d30f
304
+ pygments==2.18.0 \
305
+ --hash=sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199 \
306
+ --hash=sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a
307
+ pyparsing==3.1.2 \
308
+ --hash=sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad \
309
+ --hash=sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742
310
+ python-dateutil==2.9.0.post0 \
311
+ --hash=sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3 \
312
+ --hash=sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427
313
+ python-dotenv==1.0.1 \
314
+ --hash=sha256:e324ee90a023d808f1959c46bcbc04446a10ced277783dc6ee09987c37ec10ca \
315
+ --hash=sha256:f7b63ef50f1b690dddf550d03497b66d609393b40b564ed0d674909a68ebf16a
316
+ python-multipart==0.0.9 \
317
+ --hash=sha256:03f54688c663f1b7977105f021043b0793151e4cb1c1a9d4a11fc13d622c4026 \
318
+ --hash=sha256:97ca7b8ea7b05f977dc3849c3ba99d51689822fab725c3703af7c866a0c2b215
319
+ pytz==2024.1 \
320
+ --hash=sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812 \
321
+ --hash=sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319
322
+ pyyaml==6.0.1 \
323
+ --hash=sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290 \
324
+ --hash=sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938 \
325
+ --hash=sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d \
326
+ --hash=sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515 \
327
+ --hash=sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924 \
328
+ --hash=sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43 \
329
+ --hash=sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a \
330
+ --hash=sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d \
331
+ --hash=sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f
332
+ referencing==0.35.1 \
333
+ --hash=sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c \
334
+ --hash=sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de
335
+ requests==2.32.3 \
336
+ --hash=sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760 \
337
+ --hash=sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6
338
+ rich==13.7.1 \
339
+ --hash=sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222 \
340
+ --hash=sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432
341
+ rpds-py==0.18.1 \
342
+ --hash=sha256:08d74b184f9ab6289b87b19fe6a6d1a97fbfea84b8a3e745e87a5de3029bf944 \
343
+ --hash=sha256:17c6d2155e2423f7e79e3bb18151c686d40db42d8645e7977442170c360194d4 \
344
+ --hash=sha256:1d54f74f40b1f7aaa595a02ff42ef38ca654b1469bef7d52867da474243cc633 \
345
+ --hash=sha256:27bba383e8c5231cd559affe169ca0b96ec78d39909ffd817f28b166d7ddd4d8 \
346
+ --hash=sha256:2c3caec4ec5cd1d18e5dd6ae5194d24ed12785212a90b37f5f7f06b8bedd7139 \
347
+ --hash=sha256:38e14fb4e370885c4ecd734f093a2225ee52dc384b86fa55fe3f74638b2cfb09 \
348
+ --hash=sha256:48c2faaa8adfacefcbfdb5f2e2e7bdad081e5ace8d182e5f4ade971f128e6bb3 \
349
+ --hash=sha256:4a98a1f0552b5f227a3d6422dbd61bc6f30db170939bd87ed14f3c339aa6c7c9 \
350
+ --hash=sha256:51584acc5916212e1bf45edd17f3a6b05fe0cbb40482d25e619f824dccb679de \
351
+ --hash=sha256:531796fb842b53f2695e94dc338929e9f9dbf473b64710c28af5a160b2a8927d \
352
+ --hash=sha256:5c45a639e93a0c5d4b788b2613bd637468edd62f8f95ebc6fcc303d58ab3f0a8 \
353
+ --hash=sha256:6031b25fb1b06327b43d841f33842b383beba399884f8228a6bb3df3088485ff \
354
+ --hash=sha256:618916f5535784960f3ecf8111581f4ad31d347c3de66d02e728de460a46303c \
355
+ --hash=sha256:636a15acc588f70fda1661234761f9ed9ad79ebed3f2125d44be0862708b666e \
356
+ --hash=sha256:6afd80f6c79893cfc0574956f78a0add8c76e3696f2d6a15bca2c66c415cf2d4 \
357
+ --hash=sha256:6c4c4c3f878df21faf5fac86eda32671c27889e13570645a9eea0a1abdd50922 \
358
+ --hash=sha256:732672fbc449bab754e0b15356c077cc31566df874964d4801ab14f71951ea80 \
359
+ --hash=sha256:740884bc62a5e2bbb31e584f5d23b32320fd75d79f916f15a788d527a5e83644 \
360
+ --hash=sha256:7700936ef9d006b7ef605dc53aa364da2de5a3aa65516a1f3ce73bf82ecfc7ae \
361
+ --hash=sha256:7732770412bab81c5a9f6d20aeb60ae943a9b36dcd990d876a773526468e7163 \
362
+ --hash=sha256:7f1944ce16401aad1e3f7d312247b3d5de7981f634dc9dfe90da72b87d37887d \
363
+ --hash=sha256:81c5196a790032e0fc2464c0b4ab95f8610f96f1f2fa3d4deacce6a79852da60 \
364
+ --hash=sha256:8352f48d511de5f973e4f2f9412736d7dea76c69faa6d36bcf885b50c758ab9a \
365
+ --hash=sha256:8d2e182c9ee01135e11e9676e9a62dfad791a7a467738f06726872374a83db49 \
366
+ --hash=sha256:910e71711d1055b2768181efa0a17537b2622afeb0424116619817007f8a2b10 \
367
+ --hash=sha256:942695a206a58d2575033ff1e42b12b2aece98d6003c6bc739fbf33d1773b12f \
368
+ --hash=sha256:998125738de0158f088aef3cb264a34251908dd2e5d9966774fdab7402edfab7 \
369
+ --hash=sha256:a3d456ff2a6a4d2adcdf3c1c960a36f4fd2fec6e3b4902a42a384d17cf4e7a65 \
370
+ --hash=sha256:a888e8bdb45916234b99da2d859566f1e8a1d2275a801bb8e4a9644e3c7e7909 \
371
+ --hash=sha256:b906b5f58892813e5ba5c6056d6a5ad08f358ba49f046d910ad992196ea61397 \
372
+ --hash=sha256:b9bb1f182a97880f6078283b3505a707057c42bf55d8fca604f70dedfdc0772a \
373
+ --hash=sha256:bd1105b50ede37461c1d51b9698c4f4be6e13e69a908ab7751e3807985fc0346 \
374
+ --hash=sha256:c273e795e7a0f1fddd46e1e3cb8be15634c29ae8ff31c196debb620e1edb9333 \
375
+ --hash=sha256:cbfbea39ba64f5e53ae2915de36f130588bba71245b418060ec3330ebf85678e \
376
+ --hash=sha256:ce0bb20e3a11bd04461324a6a798af34d503f8d6f1aa3d2aa8901ceaf039176d \
377
+ --hash=sha256:d0cee71bc618cd93716f3c1bf56653740d2d13ddbd47673efa8bf41435a60daa \
378
+ --hash=sha256:d21be4770ff4e08698e1e8e0bce06edb6ea0626e7c8f560bc08222880aca6a6f \
379
+ --hash=sha256:d31dea506d718693b6b2cffc0648a8929bdc51c70a311b2770f09611caa10d53 \
380
+ --hash=sha256:d44607f98caa2961bab4fa3c4309724b185b464cdc3ba6f3d7340bac3ec97cc1 \
381
+ --hash=sha256:d70129cef4a8d979caa37e7fe957202e7eee8ea02c5e16455bc9808a59c6b2f0 \
382
+ --hash=sha256:d85164315bd68c0806768dc6bb0429c6f95c354f87485ee3593c4f6b14def2bd \
383
+ --hash=sha256:dc48b479d540770c811fbd1eb9ba2bb66951863e448efec2e2c102625328e92f \
384
+ --hash=sha256:e2be6e9dd4111d5b31ba3b74d17da54a8319d8168890fbaea4b9e5c3de630ae5 \
385
+ --hash=sha256:f3027be483868c99b4985fda802a57a67fdf30c5d9a50338d9db646d590198da \
386
+ --hash=sha256:f6f8e3fecca256fefc91bb6765a693d96692459d7d4c644660a9fff32e517843 \
387
+ --hash=sha256:fa242ac1ff583e4ec7771141606aafc92b361cd90a05c30d93e343a0c2d82a89 \
388
+ --hash=sha256:fab6ce90574645a0d6c58890e9bcaac8d94dff54fb51c69e5522a7358b80ab64
389
+ ruff==0.4.8 \
390
+ --hash=sha256:14019a06dbe29b608f6b7cbcec300e3170a8d86efaddb7b23405cb7f7dcaf780 \
391
+ --hash=sha256:16d717b1d57b2e2fd68bd0bf80fb43931b79d05a7131aa477d66fc40fbd86268 \
392
+ --hash=sha256:284c2e3f3396fb05f5f803c9fffb53ebbe09a3ebe7dda2929ed8d73ded736deb \
393
+ --hash=sha256:384154a1c3f4bf537bac69f33720957ee49ac8d484bfc91720cc94172026ceed \
394
+ --hash=sha256:6d795d7639212c2dfd01991259460101c22aabf420d9b943f153ab9d9706e6a9 \
395
+ --hash=sha256:6ea874950daca5697309d976c9afba830d3bf0ed66887481d6bca1673fc5b66a \
396
+ --hash=sha256:704977a658131651a22b5ebeb28b717ef42ac6ee3b11e91dc87b633b5d83142b \
397
+ --hash=sha256:72584676164e15a68a15778fd1b17c28a519e7a0622161eb2debdcdabdc71883 \
398
+ --hash=sha256:7663a6d78f6adb0eab270fa9cf1ff2d28618ca3a652b60f2a234d92b9ec89066 \
399
+ --hash=sha256:9678d5c9b43315f323af2233a04d747409d1e3aa6789620083a82d1066a35199 \
400
+ --hash=sha256:a7354f921e3fbe04d2a62d46707e569f9315e1a613307f7311a935743c51a764 \
401
+ --hash=sha256:aad360893e92486662ef3be0a339c5ca3c1b109e0134fcd37d534d4be9fb8de3 \
402
+ --hash=sha256:d05f8d6f0c3cce5026cecd83b7a143dcad503045857bc49662f736437380ad45 \
403
+ --hash=sha256:e14a3a095d07560a9d6769a72f781d73259655919d9b396c650fc98a8157555d \
404
+ --hash=sha256:e9d5ce97cacc99878aa0d084c626a15cd21e6b3d53fd6f9112b7fc485918e1fa \
405
+ --hash=sha256:eeceb78da8afb6de0ddada93112869852d04f1cd0f6b80fe464fd4e35c330913 \
406
+ --hash=sha256:fc95aac2943ddf360376be9aa3107c8cf9640083940a8c5bd824be692d2216dc
407
+ semantic-version==2.10.0 \
408
+ --hash=sha256:bdabb6d336998cbb378d4b9db3a4b56a1e3235701dc05ea2690d9a997ed5041c \
409
+ --hash=sha256:de78a3b8e0feda74cabc54aab2da702113e33ac9d9eb9d2389bcf1f58b7d9177
410
+ shellingham==1.5.4 \
411
+ --hash=sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686 \
412
+ --hash=sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de
413
+ six==1.16.0 \
414
+ --hash=sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926 \
415
+ --hash=sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254
416
+ sniffio==1.3.1 \
417
+ --hash=sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2 \
418
+ --hash=sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc
419
+ starlette==0.37.2 \
420
+ --hash=sha256:6fe59f29268538e5d0d182f2791a479a0c64638e6935d1c6989e63fb2699c6ee \
421
+ --hash=sha256:9af890290133b79fc3db55474ade20f6220a364a0402e0b556e7cd5e1e093823
422
+ tomlkit==0.12.0 \
423
+ --hash=sha256:01f0477981119c7d8ee0f67ebe0297a7c95b14cf9f4b102b45486deb77018716 \
424
+ --hash=sha256:926f1f37a1587c7a4f6c7484dae538f1345d96d793d9adab5d3675957b1d0766
425
+ toolz==0.12.1 \
426
+ --hash=sha256:d22731364c07d72eea0a0ad45bafb2c2937ab6fd38a3507bf55eae8744aa7d85 \
427
+ --hash=sha256:ecca342664893f177a13dac0e6b41cbd8ac25a358e5f215316d43e2100224f4d
428
+ tqdm==4.66.4 \
429
+ --hash=sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644 \
430
+ --hash=sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb
431
+ typer==0.12.3 \
432
+ --hash=sha256:070d7ca53f785acbccba8e7d28b08dcd88f79f1fbda035ade0aecec71ca5c914 \
433
+ --hash=sha256:49e73131481d804288ef62598d97a1ceef3058905aa536a1134f90891ba35482
434
+ typing-extensions==4.12.2 \
435
+ --hash=sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d \
436
+ --hash=sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8
437
+ tzdata==2024.1 \
438
+ --hash=sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd \
439
+ --hash=sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252
440
+ tzlocal==5.2 \
441
+ --hash=sha256:49816ef2fe65ea8ac19d19aa7a1ae0551c834303d5014c6d5a62e4cbda8047b8 \
442
+ --hash=sha256:8d399205578f1a9342816409cc1e46a93ebd5755e39ea2d85334bea911bf0e6e
443
+ ujson==5.10.0 \
444
+ --hash=sha256:0de4971a89a762398006e844ae394bd46991f7c385d7a6a3b93ba229e6dac17e \
445
+ --hash=sha256:22cffecf73391e8abd65ef5f4e4dd523162a3399d5e84faa6aebbf9583df86d6 \
446
+ --hash=sha256:2601aa9ecdbee1118a1c2065323bda35e2c5a2cf0797ef4522d485f9d3ef65bd \
447
+ --hash=sha256:26b0e2d2366543c1bb4fbd457446f00b0187a2bddf93148ac2da07a53fe51569 \
448
+ --hash=sha256:29b443c4c0a113bcbb792c88bea67b675c7ca3ca80c3474784e08bba01c18d51 \
449
+ --hash=sha256:348898dd702fc1c4f1051bc3aacbf894caa0927fe2c53e68679c073375f732cf \
450
+ --hash=sha256:5b6fee72fa77dc172a28f21693f64d93166534c263adb3f96c413ccc85ef6e64 \
451
+ --hash=sha256:61d0af13a9af01d9f26d2331ce49bb5ac1fb9c814964018ac8df605b5422dcb3 \
452
+ --hash=sha256:7663960f08cd5a2bb152f5ee3992e1af7690a64c0e26d31ba7b3ff5b2ee66337 \
453
+ --hash=sha256:78778a3aa7aafb11e7ddca4e29f46bc5139131037ad628cc10936764282d6753 \
454
+ --hash=sha256:7c10f4654e5326ec14a46bcdeb2b685d4ada6911050aa8baaf3501e57024b804 \
455
+ --hash=sha256:924f7318c31874d6bb44d9ee1900167ca32aa9b69389b98ecbde34c1698a250f \
456
+ --hash=sha256:94a87f6e151c5f483d7d54ceef83b45d3a9cca7a9cb453dbdbb3f5a6f64033f5 \
457
+ --hash=sha256:a245d59f2ffe750446292b0094244df163c3dc96b3ce152a2c837a44e7cda9d1 \
458
+ --hash=sha256:ac56eb983edce27e7f51d05bc8dd820586c6e6be1c5216a6809b0c668bb312b8 \
459
+ --hash=sha256:b0111b27f2d5c820e7f2dbad7d48e3338c824e7ac4d2a12da3dc6061cc39c8e6 \
460
+ --hash=sha256:b3cd8f3c5d8c7738257f1018880444f7b7d9b66232c64649f562d7ba86ad4bc1 \
461
+ --hash=sha256:ba43cc34cce49cf2d4bc76401a754a81202d8aa926d0e2b79f0ee258cb15d3a4 \
462
+ --hash=sha256:baed37ea46d756aca2955e99525cc02d9181de67f25515c468856c38d52b5f3b \
463
+ --hash=sha256:beeaf1c48e32f07d8820c705ff8e645f8afa690cca1544adba4ebfa067efdc88 \
464
+ --hash=sha256:c18610b9ccd2874950faf474692deee4223a994251bc0a083c114671b64e6518 \
465
+ --hash=sha256:c66962ca7565605b355a9ed478292da628b8f18c0f2793021ca4425abf8b01e5 \
466
+ --hash=sha256:caf270c6dba1be7a41125cd1e4fc7ba384bf564650beef0df2dd21a00b7f5770 \
467
+ --hash=sha256:d8640fb4072d36b08e95a3a380ba65779d356b2fee8696afeb7794cf0902d0a1 \
468
+ --hash=sha256:e1402f0564a97d2a52310ae10a64d25bcef94f8dd643fcf5d310219d915484f7 \
469
+ --hash=sha256:ecb24f0bdd899d368b715c9e6664166cf694d1e57be73f17759573a6986dd95a \
470
+ --hash=sha256:f44bd4b23a0e723bf8b10628288c2c7c335161d6840013d4d5de20e48551773b \
471
+ --hash=sha256:fbd8fd427f57a03cff3ad6574b5e299131585d9727c8c366da4624a9069ed746
472
+ urllib3==2.2.1 \
473
+ --hash=sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d \
474
+ --hash=sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19
475
+ uvicorn==0.30.1 \
476
+ --hash=sha256:cd17daa7f3b9d7a24de3617820e634d0933b69eed8e33a516071174427238c81 \
477
+ --hash=sha256:d46cd8e0fd80240baffbcd9ec1012a712938754afcf81bce56c024c1656aece8
478
+ uvloop==0.19.0; (sys_platform != "cygwin" and sys_platform != "win32") and platform_python_implementation != "PyPy" \
479
+ --hash=sha256:0246f4fd1bf2bf702e06b0d45ee91677ee5c31242f39aab4ea6fe0c51aedd0fd \
480
+ --hash=sha256:5588bd21cf1fcf06bded085f37e43ce0e00424197e7c10e77afd4bbefffef428 \
481
+ --hash=sha256:5a05128d315e2912791de6088c34136bfcdd0c7cbc1cf85fd6fd1bb321b7c849 \
482
+ --hash=sha256:5f17766fb6da94135526273080f3455a112f82570b2ee5daa64d682387fe0dcd \
483
+ --hash=sha256:7b1fd71c3843327f3bbc3237bedcdb6504fd50368ab3e04d0410e52ec293f5b8 \
484
+ --hash=sha256:cd81bdc2b8219cb4b2556eea39d2e36bfa375a2dd021404f90a62e44efaaf957 \
485
+ --hash=sha256:de4313d7f575474c8f5a12e163f6d89c0a878bc49219641d49e6f1444369a90e
486
+ watchfiles==0.22.0 \
487
+ --hash=sha256:00ad0bcd399503a84cc688590cdffbe7a991691314dde5b57b3ed50a41319a31 \
488
+ --hash=sha256:030bc4e68d14bcad2294ff68c1ed87215fbd9a10d9dea74e7cfe8a17869785ab \
489
+ --hash=sha256:067dea90c43bf837d41e72e546196e674f68c23702d3ef80e4e816937b0a3ffd \
490
+ --hash=sha256:0bc3b2f93a140df6806c8467c7f51ed5e55a931b031b5c2d7ff6132292e803d6 \
491
+ --hash=sha256:0c8e0aa0e8cc2a43561e0184c0513e291ca891db13a269d8d47cb9841ced7c71 \
492
+ --hash=sha256:1235c11510ea557fe21be5d0e354bae2c655a8ee6519c94617fe63e05bca4171 \
493
+ --hash=sha256:1d9188979a58a096b6f8090e816ccc3f255f137a009dd4bbec628e27696d67c1 \
494
+ --hash=sha256:2627a91e8110b8de2406d8b2474427c86f5a62bf7d9ab3654f541f319ef22bcb \
495
+ --hash=sha256:2bdadf6b90c099ca079d468f976fd50062905d61fae183f769637cb0f68ba59a \
496
+ --hash=sha256:2f350cbaa4bb812314af5dab0eb8d538481e2e2279472890864547f3fe2281ed \
497
+ --hash=sha256:4b9f2a128a32a2c273d63eb1fdbf49ad64852fc38d15b34eaa3f7ca2f0d2b797 \
498
+ --hash=sha256:5834e1f8b71476a26df97d121c0c0ed3549d869124ed2433e02491553cb468c2 \
499
+ --hash=sha256:61af9efa0733dc4ca462347becb82e8ef4945aba5135b1638bfc20fad64d4f0e \
500
+ --hash=sha256:72a44e9481afc7a5ee3291b09c419abab93b7e9c306c9ef9108cb76728ca58d2 \
501
+ --hash=sha256:7a74436c415843af2a769b36bf043b6ccbc0f8d784814ba3d42fc961cdb0a9dc \
502
+ --hash=sha256:8fdebb655bb1ba0122402352b0a4254812717a017d2dc49372a1d47e24073795 \
503
+ --hash=sha256:9624a68b96c878c10437199d9a8b7d7e542feddda8d5ecff58fdc8e67b460848 \
504
+ --hash=sha256:988e981aaab4f3955209e7e28c7794acdb690be1efa7f16f8ea5aba7ffdadacb \
505
+ --hash=sha256:ace7d060432acde5532e26863e897ee684780337afb775107c0a90ae8dbccfd2 \
506
+ --hash=sha256:b810a2c7878cbdecca12feae2c2ae8af59bea016a78bc353c184fa1e09f76b68 \
507
+ --hash=sha256:bbf8a20266136507abf88b0df2328e6a9a7c7309e8daff124dda3803306a9fdb \
508
+ --hash=sha256:c2444dc7cb9d8cc5ab88ebe792a8d75709d96eeef47f4c8fccb6df7c7bc5be71 \
509
+ --hash=sha256:c5af2347d17ab0bd59366db8752d9e037982e259cacb2ba06f2c41c08af02c39 \
510
+ --hash=sha256:da1e0a8caebf17976e2ffd00fa15f258e14749db5e014660f53114b676e68538 \
511
+ --hash=sha256:f7e1f9c5d1160d03b93fc4b68a0aeb82fe25563e12fbcdc8507f8434ab6f823c
512
+ websockets==11.0.3 \
513
+ --hash=sha256:0ac56b661e60edd453585f4bd68eb6a29ae25b5184fd5ba51e97652580458998 \
514
+ --hash=sha256:0ee68fe502f9031f19d495dae2c268830df2760c0524cbac5d759921ba8c8e82 \
515
+ --hash=sha256:1d2256283fa4b7f4c7d7d3e84dc2ece74d341bce57d5b9bf385df109c2a1a82f \
516
+ --hash=sha256:1d5023a4b6a5b183dc838808087033ec5df77580485fc533e7dab2567851b0a4 \
517
+ --hash=sha256:2d903ad4419f5b472de90cd2d40384573b25da71e33519a67797de17ef849b69 \
518
+ --hash=sha256:3ccc8a0c387629aec40f2fc9fdcb4b9d5431954f934da3eaf16cdc94f67dbfac \
519
+ --hash=sha256:41f696ba95cd92dc047e46b41b26dd24518384749ed0d99bea0a941ca87404c4 \
520
+ --hash=sha256:42cc5452a54a8e46a032521d7365da775823e21bfba2895fb7b77633cce031bb \
521
+ --hash=sha256:54c6e5b3d3a8936a4ab6870d46bdd6ec500ad62bde9e44462c32d18f1e9a8e54 \
522
+ --hash=sha256:6681ba9e7f8f3b19440921e99efbb40fc89f26cd71bf539e45d8c8a25c976dc6 \
523
+ --hash=sha256:7622a89d696fc87af8e8d280d9b421db5133ef5b29d3f7a1ce9f1a7bf7fcfa11 \
524
+ --hash=sha256:84d27a4832cc1a0ee07cdcf2b0629a8a72db73f4cf6de6f0904f6661227f256f \
525
+ --hash=sha256:8531fdcad636d82c517b26a448dcfe62f720e1922b33c81ce695d0edb91eb931 \
526
+ --hash=sha256:86d2a77fd490ae3ff6fae1c6ceaecad063d3cc2320b44377efdde79880e11526 \
527
+ --hash=sha256:88fc51d9a26b10fc331be344f1781224a375b78488fc343620184e95a4b27016 \
528
+ --hash=sha256:92b2065d642bf8c0a82d59e59053dd2fdde64d4ed44efe4870fa816c1232647b \
529
+ --hash=sha256:b67c6f5e5a401fc56394f191f00f9b3811fe843ee93f4a70df3c389d1adf857d \
530
+ --hash=sha256:bceab846bac555aff6427d060f2fcfff71042dba6f5fca7dc4f75cac815e57ca \
531
+ --hash=sha256:c114e8da9b475739dde229fd3bc6b05a6537a88a578358bc8eb29b4030fac9c9 \
532
+ --hash=sha256:d67ac60a307f760c6e65dad586f556dde58e683fab03323221a4e530ead6f74d \
533
+ --hash=sha256:dcacf2c7a6c3a84e720d1bb2b543c675bf6c40e460300b628bab1b1efc7c034c \
534
+ --hash=sha256:de36fe9c02995c7e6ae6efe2e205816f5f00c22fd1fbf343d4d18c3d5ceac2f5 \
535
+ --hash=sha256:e052b8467dd07d4943936009f46ae5ce7b908ddcac3fda581656b1b19c083d9b \
536
+ --hash=sha256:e063b1865974611313a3849d43f2c3f5368093691349cf3c7c8f8f75ad7cb280 \
537
+ --hash=sha256:e6316827e3e79b7b8e7d8e3b08f4e331af91a48e794d5d8b099928b6f0b85f20 \
538
+ --hash=sha256:ed058398f55163a79bb9f06a90ef9ccc063b204bb346c4de78efc5d15abfe602 \
539
+ --hash=sha256:f2e58f2c36cc52d41f2659e4c0cbf7353e28c8c9e63e30d8c6d3494dc9fdedcf \
540
+ --hash=sha256:ffd7dcaf744f25f82190856bc26ed81721508fc5cbf2a330751e135ff1283564
src/__init__.py ADDED
File without changes
src/encodechka/__init__.py ADDED
File without changes
src/{about.py β†’ encodechka/about.py} RENAMED
@@ -1,6 +1,7 @@
1
  from dataclasses import dataclass
2
  from enum import Enum
3
 
 
4
  @dataclass
5
  class Task:
6
  benchmark: str
@@ -11,13 +12,13 @@ class Task:
11
  # Select your tasks here
12
  # ---------------------------------------------------
13
  class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
  task0 = Task("anli_r1", "acc", "ANLI")
16
  task1 = Task("logiqa", "acc_norm", "LogiQA")
17
 
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
 
 
 
21
 
22
 
23
  # Your leaderboard name
@@ -29,7 +30,7 @@ Intro text
29
  """
30
 
31
  # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
  ## How it works
34
 
35
  ## Reproducibility
@@ -47,13 +48,16 @@ config = AutoConfig.from_pretrained("your model name", revision=revision)
47
  model = AutoModel.from_pretrained("your model name", revision=revision)
48
  tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
  ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
 
51
 
52
  Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
 
54
 
55
  ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
 
57
 
58
  ### 3) Make sure your model has an open license!
59
  This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model πŸ€—
@@ -64,7 +68,8 @@ When we add extra information about models to the leaderboard, it will be automa
64
  ## In case of model failure
65
  If your model is displayed in the `FAILED` category, its execution stopped.
66
  Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
 
68
  """
69
 
70
  CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
 
1
  from dataclasses import dataclass
2
  from enum import Enum
3
 
4
+
5
  @dataclass
6
  class Task:
7
  benchmark: str
 
12
  # Select your tasks here
13
  # ---------------------------------------------------
14
  class Tasks(Enum):
15
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
16
  task0 = Task("anli_r1", "acc", "ANLI")
17
  task1 = Task("logiqa", "acc_norm", "LogiQA")
18
 
 
 
19
 
20
+ NUM_FEWSHOT = 0 # Change with your few shot
21
+ # ---------------------------------------------------
22
 
23
 
24
  # Your leaderboard name
 
30
  """
31
 
32
  # Which evaluations are you running? how can people reproduce what you have?
33
+ LLM_BENCHMARKS_TEXT = """
34
  ## How it works
35
 
36
  ## Reproducibility
 
48
  model = AutoModel.from_pretrained("your model name", revision=revision)
49
  tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
50
  ```
51
+ If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been
52
+ improperly uploaded.
53
 
54
  Note: make sure your model is public!
55
+ Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it,
56
+ stay posted!
57
 
58
  ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
59
+ It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number
60
+ of parameters of your model to the `Extended Viewer`!
61
 
62
  ### 3) Make sure your model has an open license!
63
  This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model πŸ€—
 
68
  ## In case of model failure
69
  If your model is displayed in the `FAILED` category, its execution stopped.
70
  Make sure you have followed the above steps first.
71
+ If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without
72
+ modifications (you can add `--limit` to limit the number of examples per task).
73
  """
74
 
75
  CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
app.py β†’ src/encodechka/app.py RENAMED
@@ -1,10 +1,6 @@
1
- import subprocess
2
  import gradio as gr
3
  import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
-
7
- from src.about import (
8
  CITATION_BUTTON_LABEL,
9
  CITATION_BUTTON_TEXT,
10
  EVALUATION_QUEUE_TEXT,
@@ -12,8 +8,9 @@ from src.about import (
12
  LLM_BENCHMARKS_TEXT,
13
  TITLE,
14
  )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
 
17
  BENCHMARK_COLS,
18
  COLS,
19
  EVAL_COLS,
@@ -22,29 +19,50 @@ from src.display.utils import (
22
  TYPES,
23
  AutoEvalColumn,
24
  ModelType,
25
- fields,
26
  WeightType,
27
- Precision
28
  )
29
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
30
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
- from src.submission.submit import add_new_eval
 
 
 
 
 
 
 
 
 
 
32
 
33
 
34
  def restart_space():
35
  API.restart_space(repo_id=REPO_ID)
36
 
 
37
  try:
38
  print(EVAL_REQUESTS_PATH)
39
  snapshot_download(
40
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
 
 
 
 
 
41
  )
42
  except Exception:
43
  restart_space()
44
  try:
45
  print(EVAL_RESULTS_PATH)
46
  snapshot_download(
47
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
 
 
 
 
 
48
  )
49
  except Exception:
50
  restart_space()
@@ -86,9 +104,7 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
86
  AutoEvalColumn.model.name,
87
  ]
88
  # We use COLS to maintain sorting
89
- filtered_df = df[
90
- always_here_cols + [c for c in COLS if c in df.columns and c in columns]
91
- ]
92
  return filtered_df
93
 
94
 
@@ -105,24 +121,32 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
105
  if len(final_df) > 0:
106
  filtered_df = pd.concat(final_df)
107
  filtered_df = filtered_df.drop_duplicates(
108
- subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
 
 
 
 
109
  )
110
 
111
  return filtered_df
112
 
113
 
114
  def filter_models(
115
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
 
 
 
 
116
  ) -> pd.DataFrame:
117
  # Show all models
118
  if show_deleted:
119
  filtered_df = df
120
  else: # Show only still on the hub models
121
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
122
 
123
  type_emoji = [t[0] for t in type_query]
124
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
125
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
126
 
127
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
128
  params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
@@ -149,11 +173,7 @@ with demo:
149
  )
150
  with gr.Row():
151
  shown_columns = gr.CheckboxGroup(
152
- choices=[
153
- c.name
154
- for c in fields(AutoEvalColumn)
155
- if not c.hidden and not c.never_hidden
156
- ],
157
  value=[
158
  c.name
159
  for c in fields(AutoEvalColumn)
@@ -165,10 +185,12 @@ with demo:
165
  )
166
  with gr.Row():
167
  deleted_models_visibility = gr.Checkbox(
168
- value=False, label="Show gated/private/deleted models", interactive=True
 
 
169
  )
170
  with gr.Column(min_width=320):
171
- #with gr.Box(elem_id="box-filter"):
172
  filter_columns_type = gr.CheckboxGroup(
173
  label="Model types",
174
  choices=[t.to_str() for t in ModelType],
@@ -192,10 +214,7 @@ with demo:
192
  )
193
 
194
  leaderboard_table = gr.components.Dataframe(
195
- value=leaderboard_df[
196
- [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
197
- + shown_columns.value
198
- ],
199
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
200
  datatype=TYPES,
201
  elem_id="leaderboard-table",
@@ -223,7 +242,13 @@ with demo:
223
  ],
224
  leaderboard_table,
225
  )
226
- for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
 
 
 
 
 
 
227
  selector.change(
228
  update_table,
229
  [
@@ -314,20 +339,20 @@ with demo:
314
  )
315
  base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
316
 
317
- submit_button = gr.Button("Submit Eval")
318
- submission_result = gr.Markdown()
319
- submit_button.click(
320
- add_new_eval,
321
- [
322
- model_name_textbox,
323
- base_model_name_textbox,
324
- revision_name_textbox,
325
- precision,
326
- weight_type,
327
- model_type,
328
- ],
329
- submission_result,
330
- )
331
 
332
  with gr.Row():
333
  with gr.Accordion("πŸ“™ Citation", open=False):
@@ -342,4 +367,4 @@ with demo:
342
  scheduler = BackgroundScheduler()
343
  scheduler.add_job(restart_space, "interval", seconds=1800)
344
  scheduler.start()
345
- demo.queue(default_concurrency_limit=40).launch()
 
 
1
  import gradio as gr
2
  import pandas as pd
3
+ from about import (
 
 
 
4
  CITATION_BUTTON_LABEL,
5
  CITATION_BUTTON_TEXT,
6
  EVALUATION_QUEUE_TEXT,
 
8
  LLM_BENCHMARKS_TEXT,
9
  TITLE,
10
  )
11
+ from apscheduler.schedulers.background import BackgroundScheduler
12
+ from display.css_html_js import custom_css
13
+ from display.utils import (
14
  BENCHMARK_COLS,
15
  COLS,
16
  EVAL_COLS,
 
19
  TYPES,
20
  AutoEvalColumn,
21
  ModelType,
22
+ Precision,
23
  WeightType,
24
+ fields,
25
  )
26
+ from envs import (
27
+ API,
28
+ EVAL_REQUESTS_PATH,
29
+ EVAL_RESULTS_PATH,
30
+ QUEUE_REPO,
31
+ REPO_ID,
32
+ RESULTS_REPO,
33
+ TOKEN,
34
+ )
35
+ from huggingface_hub import snapshot_download
36
+ from populate import get_evaluation_queue_df, get_leaderboard_df
37
+
38
+ # from submission.submit import add_new_eval
39
 
40
 
41
  def restart_space():
42
  API.restart_space(repo_id=REPO_ID)
43
 
44
+
45
  try:
46
  print(EVAL_REQUESTS_PATH)
47
  snapshot_download(
48
+ repo_id=QUEUE_REPO,
49
+ local_dir=EVAL_REQUESTS_PATH,
50
+ repo_type="dataset",
51
+ tqdm_class=None,
52
+ etag_timeout=30,
53
+ token=TOKEN,
54
  )
55
  except Exception:
56
  restart_space()
57
  try:
58
  print(EVAL_RESULTS_PATH)
59
  snapshot_download(
60
+ repo_id=RESULTS_REPO,
61
+ local_dir=EVAL_RESULTS_PATH,
62
+ repo_type="dataset",
63
+ tqdm_class=None,
64
+ etag_timeout=30,
65
+ token=TOKEN,
66
  )
67
  except Exception:
68
  restart_space()
 
104
  AutoEvalColumn.model.name,
105
  ]
106
  # We use COLS to maintain sorting
107
+ filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns]]
 
 
108
  return filtered_df
109
 
110
 
 
121
  if len(final_df) > 0:
122
  filtered_df = pd.concat(final_df)
123
  filtered_df = filtered_df.drop_duplicates(
124
+ subset=[
125
+ AutoEvalColumn.model.name,
126
+ AutoEvalColumn.precision.name,
127
+ AutoEvalColumn.revision.name,
128
+ ]
129
  )
130
 
131
  return filtered_df
132
 
133
 
134
  def filter_models(
135
+ df: pd.DataFrame,
136
+ type_query: list,
137
+ size_query: list,
138
+ precision_query: list,
139
+ show_deleted: bool,
140
  ) -> pd.DataFrame:
141
  # Show all models
142
  if show_deleted:
143
  filtered_df = df
144
  else: # Show only still on the hub models
145
+ filtered_df = df[df[AutoEvalColumn.still_on_hub.name] is True]
146
 
147
  type_emoji = [t[0] for t in type_query]
148
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
149
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin([*precision_query, "None"])]
150
 
151
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
152
  params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
 
173
  )
174
  with gr.Row():
175
  shown_columns = gr.CheckboxGroup(
176
+ choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
 
 
 
 
177
  value=[
178
  c.name
179
  for c in fields(AutoEvalColumn)
 
185
  )
186
  with gr.Row():
187
  deleted_models_visibility = gr.Checkbox(
188
+ value=False,
189
+ label="Show gated/private/deleted models",
190
+ interactive=True,
191
  )
192
  with gr.Column(min_width=320):
193
+ # with gr.Box(elem_id="box-filter"):
194
  filter_columns_type = gr.CheckboxGroup(
195
  label="Model types",
196
  choices=[t.to_str() for t in ModelType],
 
214
  )
215
 
216
  leaderboard_table = gr.components.Dataframe(
217
+ value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
 
 
 
218
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
219
  datatype=TYPES,
220
  elem_id="leaderboard-table",
 
242
  ],
243
  leaderboard_table,
244
  )
245
+ for selector in [
246
+ shown_columns,
247
+ filter_columns_type,
248
+ filter_columns_precision,
249
+ filter_columns_size,
250
+ deleted_models_visibility,
251
+ ]:
252
  selector.change(
253
  update_table,
254
  [
 
339
  )
340
  base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
341
 
342
+ # submit_button = gr.Button("Submit Eval")
343
+ # submission_result = gr.Markdown()
344
+ # submit_button.click(
345
+ # add_new_eval,
346
+ # [
347
+ # model_name_textbox,
348
+ # base_model_name_textbox,
349
+ # revision_name_textbox,
350
+ # precision,
351
+ # weight_type,
352
+ # model_type,
353
+ # ],
354
+ # submission_result,
355
+ # )
356
 
357
  with gr.Row():
358
  with gr.Accordion("πŸ“™ Citation", open=False):
 
367
  scheduler = BackgroundScheduler()
368
  scheduler.add_job(restart_space, "interval", seconds=1800)
369
  scheduler.start()
370
+ demo.queue(default_concurrency_limit=40).launch()
src/encodechka/display/__init__.py ADDED
File without changes
src/{display β†’ encodechka/display}/css_html_js.py RENAMED
@@ -33,7 +33,7 @@ custom_css = """
33
  background: none;
34
  border: none;
35
  }
36
-
37
  #search-bar {
38
  padding: 0px;
39
  }
@@ -77,7 +77,7 @@ table th:first-child {
77
  #filter_type label > .wrap{
78
  width: 103px;
79
  }
80
- #filter_type label > .wrap .wrap-inner{
81
  padding: 2px;
82
  }
83
  #filter_type label > .wrap .wrap-inner input{
 
33
  background: none;
34
  border: none;
35
  }
36
+
37
  #search-bar {
38
  padding: 0px;
39
  }
 
77
  #filter_type label > .wrap{
78
  width: 103px;
79
  }
80
+ #filter_type label > .wrap .wrap-inner{
81
  padding: 2px;
82
  }
83
  #filter_type label > .wrap .wrap-inner input{
src/{display β†’ encodechka/display}/formatting.py RENAMED
File without changes
src/{display β†’ encodechka/display}/utils.py RENAMED
@@ -3,7 +3,8 @@ from enum import Enum
3
 
4
  import pandas as pd
5
 
6
- from src.about import Tasks
 
7
 
8
  def fields(raw_class):
9
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@@ -20,12 +21,25 @@ class ColumnContent:
20
  hidden: bool = False
21
  never_hidden: bool = False
22
 
 
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
25
  # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
 
 
 
 
 
 
 
 
 
 
 
 
29
  auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
  for task in Tasks:
31
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
@@ -37,12 +51,19 @@ auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precisi
37
  auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
  auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
  auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
 
 
 
 
 
 
41
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
 
43
  # We use make dataclass to dynamically fill the scores from Tasks
44
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
 
 
46
  ## For the queue columns in the submission tab
47
  @dataclass(frozen=True)
48
  class EvalQueueColumn: # Queue column
@@ -53,12 +74,13 @@ class EvalQueueColumn: # Queue column
53
  weight_type = ColumnContent("weight_type", "str", "Original")
54
  status = ColumnContent("status", "str", True)
55
 
 
56
  ## All the model information that we might need
57
  @dataclass
58
  class ModelDetails:
59
  name: str
60
  display_name: str = ""
61
- symbol: str = "" # emoji
62
 
63
 
64
  class ModelType(Enum):
@@ -83,18 +105,20 @@ class ModelType(Enum):
83
  return ModelType.IFT
84
  return ModelType.Unknown
85
 
 
86
  class WeightType(Enum):
87
  Adapter = ModelDetails("Adapter")
88
  Original = ModelDetails("Original")
89
  Delta = ModelDetails("Delta")
90
 
 
91
  class Precision(Enum):
92
  float16 = ModelDetails("float16")
93
  bfloat16 = ModelDetails("bfloat16")
94
  float32 = ModelDetails("float32")
95
- #qt_8bit = ModelDetails("8bit")
96
- #qt_4bit = ModelDetails("4bit")
97
- #qt_GPTQ = ModelDetails("GPTQ")
98
  Unknown = ModelDetails("?")
99
 
100
  def from_str(precision):
@@ -104,14 +128,15 @@ class Precision(Enum):
104
  return Precision.bfloat16
105
  if precision in ["float32"]:
106
  return Precision.float32
107
- #if precision in ["8bit"]:
108
  # return Precision.qt_8bit
109
- #if precision in ["4bit"]:
110
  # return Precision.qt_4bit
111
- #if precision in ["GPTQ", "None"]:
112
  # return Precision.qt_GPTQ
113
  return Precision.Unknown
114
 
 
115
  # Column selection
116
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
117
  TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
 
3
 
4
  import pandas as pd
5
 
6
+ from ..about import Tasks
7
+
8
 
9
  def fields(raw_class):
10
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
 
21
  hidden: bool = False
22
  never_hidden: bool = False
23
 
24
+
25
  ## Leaderboard columns
26
  auto_eval_column_dict = []
27
  # Init
28
+ auto_eval_column_dict.append(
29
+ [
30
+ "model_type_symbol",
31
+ ColumnContent,
32
+ ColumnContent("T", "str", True, never_hidden=True),
33
+ ]
34
+ )
35
+ auto_eval_column_dict.append(
36
+ [
37
+ "model",
38
+ ColumnContent,
39
+ ColumnContent("Model", "markdown", True, never_hidden=True),
40
+ ]
41
+ )
42
+ # Scores
43
  auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
44
  for task in Tasks:
45
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
 
51
  auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
52
  auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
53
  auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
54
+ auto_eval_column_dict.append(
55
+ [
56
+ "still_on_hub",
57
+ ColumnContent,
58
+ ColumnContent("Available on the hub", "bool", False),
59
+ ]
60
+ )
61
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
62
 
63
  # We use make dataclass to dynamically fill the scores from Tasks
64
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
65
 
66
+
67
  ## For the queue columns in the submission tab
68
  @dataclass(frozen=True)
69
  class EvalQueueColumn: # Queue column
 
74
  weight_type = ColumnContent("weight_type", "str", "Original")
75
  status = ColumnContent("status", "str", True)
76
 
77
+
78
  ## All the model information that we might need
79
  @dataclass
80
  class ModelDetails:
81
  name: str
82
  display_name: str = ""
83
+ symbol: str = "" # emoji
84
 
85
 
86
  class ModelType(Enum):
 
105
  return ModelType.IFT
106
  return ModelType.Unknown
107
 
108
+
109
  class WeightType(Enum):
110
  Adapter = ModelDetails("Adapter")
111
  Original = ModelDetails("Original")
112
  Delta = ModelDetails("Delta")
113
 
114
+
115
  class Precision(Enum):
116
  float16 = ModelDetails("float16")
117
  bfloat16 = ModelDetails("bfloat16")
118
  float32 = ModelDetails("float32")
119
+ # qt_8bit = ModelDetails("8bit")
120
+ # qt_4bit = ModelDetails("4bit")
121
+ # qt_GPTQ = ModelDetails("GPTQ")
122
  Unknown = ModelDetails("?")
123
 
124
  def from_str(precision):
 
128
  return Precision.bfloat16
129
  if precision in ["float32"]:
130
  return Precision.float32
131
+ # if precision in ["8bit"]:
132
  # return Precision.qt_8bit
133
+ # if precision in ["4bit"]:
134
  # return Precision.qt_4bit
135
+ # if precision in ["GPTQ", "None"]:
136
  # return Precision.qt_GPTQ
137
  return Precision.Unknown
138
 
139
+
140
  # Column selection
141
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
142
  TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
src/{envs.py β†’ encodechka/envs.py} RENAMED
@@ -4,9 +4,9 @@ from huggingface_hub import HfApi
4
 
5
  # Info to change for your repository
6
  # ----------------------------------
7
- TOKEN = os.environ.get("TOKEN") # A read/write token for your org
8
 
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
  # ----------------------------------
11
 
12
  REPO_ID = f"{OWNER}/leaderboard"
@@ -14,7 +14,7 @@ QUEUE_REPO = f"{OWNER}/requests"
14
  RESULTS_REPO = f"{OWNER}/results"
15
 
16
  # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
 
19
  # Local caches
20
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
 
4
 
5
  # Info to change for your repository
6
  # ----------------------------------
7
+ TOKEN = os.environ.get("TOKEN") # A read/write token for your org
8
 
9
+ OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
  # ----------------------------------
11
 
12
  REPO_ID = f"{OWNER}/leaderboard"
 
14
  RESULTS_REPO = f"{OWNER}/results"
15
 
16
  # If you setup a cache later, just change HF_HOME
17
+ CACHE_PATH = os.getenv("HF_HOME", ".")
18
 
19
  # Local caches
20
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
src/encodechka/leaderboard/__init__.py ADDED
File without changes
src/{leaderboard β†’ encodechka/leaderboard}/read_evals.py RENAMED
@@ -1,35 +1,34 @@
1
  import glob
2
  import json
3
- import math
4
  import os
5
  from dataclasses import dataclass
6
 
7
  import dateutil
8
  import numpy as np
9
 
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
 
14
 
15
  @dataclass
16
  class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
  model: str
23
- revision: str # commit hash, "" if main
24
  results: dict
25
  precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
  license: str = "?"
30
  likes: int = 0
31
  num_params: int = 0
32
- date: str = "" # submission date of request file
33
  still_on_hub: bool = False
34
 
35
  @classmethod
@@ -58,7 +57,10 @@ class EvalResult:
58
  full_model = "/".join(org_and_model)
59
 
60
  still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
 
 
 
62
  )
63
  architecture = "?"
64
  if model_config is not None:
@@ -85,10 +87,10 @@ class EvalResult:
85
  org=org,
86
  model=model,
87
  results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
  still_on_hub=still_on_hub,
91
- architecture=architecture
92
  )
93
 
94
  def update_with_request_file(self, requests_path):
@@ -96,7 +98,7 @@ class EvalResult:
96
  request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
 
98
  try:
99
- with open(request_file, "r") as f:
100
  request = json.load(f)
101
  self.model_type = ModelType.from_str(request.get("model_type", ""))
102
  self.weight_type = WeightType[request.get("weight_type", "Original")]
@@ -144,12 +146,9 @@ def get_request_file_for_model(requests_path, model_name, precision):
144
  request_file = ""
145
  request_files = sorted(request_files, reverse=True)
146
  for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
  req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
  request_file = tmp_request_file
154
  return request_file
155
 
@@ -188,7 +187,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
188
  results = []
189
  for v in eval_results.values():
190
  try:
191
- v.to_dict() # we test if the dict version is complete
192
  results.append(v)
193
  except KeyError: # not all eval values present
194
  continue
 
1
  import glob
2
  import json
 
3
  import os
4
  from dataclasses import dataclass
5
 
6
  import dateutil
7
  import numpy as np
8
 
9
+ from ..display.formatting import make_clickable_model
10
+ from ..display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
11
+ from ..submission.check_validity import is_model_on_hub
12
 
13
 
14
  @dataclass
15
  class EvalResult:
16
+ """Represents one full evaluation. Built from a combination of the result and request file for a given run."""
17
+
18
+ eval_name: str # org_model_precision (uid)
19
+ full_model: str # org/model (path on hub)
20
+ org: str
21
  model: str
22
+ revision: str # commit hash, "" if main
23
  results: dict
24
  precision: Precision = Precision.Unknown
25
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
26
+ weight_type: WeightType = WeightType.Original # Original or Adapter
27
+ architecture: str = "Unknown"
28
  license: str = "?"
29
  likes: int = 0
30
  num_params: int = 0
31
+ date: str = "" # submission date of request file
32
  still_on_hub: bool = False
33
 
34
  @classmethod
 
57
  full_model = "/".join(org_and_model)
58
 
59
  still_on_hub, _, model_config = is_model_on_hub(
60
+ full_model,
61
+ config.get("model_sha", "main"),
62
+ trust_remote_code=True,
63
+ test_tokenizer=False,
64
  )
65
  architecture = "?"
66
  if model_config is not None:
 
87
  org=org,
88
  model=model,
89
  results=results,
90
+ precision=precision,
91
+ revision=config.get("model_sha", ""),
92
  still_on_hub=still_on_hub,
93
+ architecture=architecture,
94
  )
95
 
96
  def update_with_request_file(self, requests_path):
 
98
  request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
99
 
100
  try:
101
+ with open(request_file) as f:
102
  request = json.load(f)
103
  self.model_type = ModelType.from_str(request.get("model_type", ""))
104
  self.weight_type = WeightType[request.get("weight_type", "Original")]
 
146
  request_file = ""
147
  request_files = sorted(request_files, reverse=True)
148
  for tmp_request_file in request_files:
149
+ with open(tmp_request_file) as f:
150
  req_content = json.load(f)
151
+ if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
 
 
 
152
  request_file = tmp_request_file
153
  return request_file
154
 
 
187
  results = []
188
  for v in eval_results.values():
189
  try:
190
+ v.to_dict() # we test if the dict version is complete
191
  results.append(v)
192
  except KeyError: # not all eval values present
193
  continue
src/{populate.py β†’ encodechka/populate.py} RENAMED
@@ -2,10 +2,9 @@ import json
2
  import os
3
 
4
  import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
 
10
 
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
 
2
  import os
3
 
4
  import pandas as pd
5
+ from display.formatting import has_no_nan_values, make_clickable_model
6
+ from display.utils import AutoEvalColumn, EvalQueueColumn
7
+ from leaderboard.read_evals import get_raw_eval_results
 
8
 
9
 
10
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
src/encodechka/submission/__init__.py ADDED
File without changes
src/encodechka/submission/check_validity.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import json
2
+ # import os
3
+ # from collections import defaultdict
4
+ #
5
+ # import huggingface_hub
6
+ # from huggingface_hub import ModelCard
7
+ # from huggingface_hub.hf_api import ModelInfo
8
+ # from transformers import AutoConfig
9
+ # from transformers.models.auto.tokenization_auto import AutoTokenizer
10
+ #
11
+ #
12
+ # def check_model_card(repo_id: str) -> tuple[bool, str]:
13
+ # """Checks if the model card and license exist and have been filled"""
14
+ # try:
15
+ # card = ModelCard.load(repo_id)
16
+ # except huggingface_hub.utils.EntryNotFoundError:
17
+ # return (
18
+ # False,
19
+ # "Please add a model card to your model to explain how you trained/fine-tuned it.",
20
+ # )
21
+ #
22
+ # # Enforce license metadata
23
+ # if card.data.license is None:
24
+ # if not ("license_name" in card.data and "license_link" in card.data):
25
+ # return False, (
26
+ # "License not found. Please add a license to your model card using the `license` metadata or a"
27
+ # " `license_name`/`license_link` pair."
28
+ # )
29
+ #
30
+ # # Enforce card content
31
+ # if len(card.text) < 200:
32
+ # return False, "Please add a description to your model card, it is too short."
33
+ #
34
+ # return True, ""
35
+ #
36
+ #
37
+ # def is_model_on_hub(
38
+ # model_name: str,
39
+ # revision: str,
40
+ # token: str | None = None,
41
+ # trust_remote_code=False,
42
+ # test_tokenizer=False,
43
+ # ) -> tuple[bool, str]:
44
+ # """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
45
+ # try:
46
+ # config = AutoConfig.from_pretrained(
47
+ # model_name,
48
+ # revision=revision,
49
+ # trust_remote_code=trust_remote_code,
50
+ # token=token,
51
+ # )
52
+ # if test_tokenizer:
53
+ # try:
54
+ # tk = AutoTokenizer.from_pretrained(
55
+ # model_name,
56
+ # revision=revision,
57
+ # trust_remote_code=trust_remote_code,
58
+ # token=token,
59
+ # )
60
+ # except ValueError as e:
61
+ # return (
62
+ # False,
63
+ # f"uses a tokenizer which is not in a transformers release: {e}",
64
+ # None,
65
+ # )
66
+ # except Exception:
67
+ # return (
68
+ # False,
69
+ # "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
70
+ # None,
71
+ # )
72
+ # return True, None, config
73
+ #
74
+ # except ValueError:
75
+ # return (
76
+ # False,
77
+ # "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
78
+ # None,
79
+ # )
80
+ #
81
+ # except Exception:
82
+ # return False, "was not found on hub!", None
83
+ #
84
+ #
85
+ # def get_model_size(model_info: ModelInfo, precision: str):
86
+ # """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
87
+ # try:
88
+ # model_size = round(model_info.safetensors["total"] / 1e9, 3)
89
+ # except (AttributeError, TypeError):
90
+ # return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
91
+ #
92
+ # size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
93
+ # model_size = size_factor * model_size
94
+ # return model_size
95
+ #
96
+ #
97
+ # def get_model_arch(model_info: ModelInfo):
98
+ # """Gets the model architecture from the configuration"""
99
+ # return model_info.config.get("architectures", "Unknown")
100
+ #
101
+ #
102
+ # def already_submitted_models(requested_models_dir: str) -> set[str]:
103
+ # """Gather a list of already submitted models to avoid duplicates"""
104
+ # depth = 1
105
+ # file_names = []
106
+ # users_to_submission_dates = defaultdict(list)
107
+ #
108
+ # for root, _, files in os.walk(requested_models_dir):
109
+ # current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
110
+ # if current_depth == depth:
111
+ # for file in files:
112
+ # if not file.endswith(".json"):
113
+ # continue
114
+ # with open(os.path.join(root, file)) as f:
115
+ # info = json.load(f)
116
+ # file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
117
+ #
118
+ # # Select organisation
119
+ # if info["model"].count("/") == 0 or "submitted_time" not in info:
120
+ # continue
121
+ # organisation, _ = info["model"].split("/")
122
+ # users_to_submission_dates[organisation].append(info["submitted_time"])
123
+ #
124
+ # return set(file_names), users_to_submission_dates
src/encodechka/submission/submit.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import json
2
+ # import os
3
+ # from datetime import datetime, timezone
4
+ #
5
+ # from ..display.formatting import styled_error, styled_message, styled_warning
6
+ # from ..envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, TOKEN
7
+ # from .check_validity import (
8
+ # already_submitted_models,
9
+ # check_model_card,
10
+ # get_model_size,
11
+ # is_model_on_hub,
12
+ # )
13
+ #
14
+ # REQUESTED_MODELS = None
15
+ # USERS_TO_SUBMISSION_DATES = None
16
+ #
17
+ #
18
+ # def add_new_eval(
19
+ # model: str,
20
+ # base_model: str,
21
+ # revision: str,
22
+ # precision: str,
23
+ # weight_type: str,
24
+ # model_type: str,
25
+ # ):
26
+ # global REQUESTED_MODELS
27
+ # global USERS_TO_SUBMISSION_DATES
28
+ # if not REQUESTED_MODELS:
29
+ # REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
30
+ #
31
+ # user_name = ""
32
+ # model_path = model
33
+ # if "/" in model:
34
+ # user_name = model.split("/")[0]
35
+ # model_path = model.split("/")[1]
36
+ #
37
+ # precision = precision.split(" ")[0]
38
+ # current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
39
+ #
40
+ # if model_type is None or model_type == "":
41
+ # return styled_error("Please select a model type.")
42
+ #
43
+ # # Does the model actually exist?
44
+ # if revision == "":
45
+ # revision = "main"
46
+ #
47
+ # # Is the model on the hub?
48
+ # if weight_type in ["Delta", "Adapter"]:
49
+ # base_model_on_hub, error, _ = is_model_on_hub(
50
+ # model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True
51
+ # )
52
+ # if not base_model_on_hub:
53
+ # return styled_error(f'Base model "{base_model}" {error}')
54
+ #
55
+ # if not weight_type == "Adapter":
56
+ # model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
57
+ # if not model_on_hub:
58
+ # return styled_error(f'Model "{model}" {error}')
59
+ #
60
+ # # Is the model info correctly filled?
61
+ # try:
62
+ # model_info = API.model_info(repo_id=model, revision=revision)
63
+ # except Exception:
64
+ # return styled_error("Could not get your model information. Please fill it up properly.")
65
+ #
66
+ # model_size = get_model_size(model_info=model_info, precision=precision)
67
+ #
68
+ # # Were the model card and license filled?
69
+ # try:
70
+ # license = model_info.cardData["license"]
71
+ # except Exception:
72
+ # return styled_error("Please select a license for your model")
73
+ #
74
+ # modelcard_OK, error_msg = check_model_card(model)
75
+ # if not modelcard_OK:
76
+ # return styled_error(error_msg)
77
+ #
78
+ # # Seems good, creating the eval
79
+ # print("Adding new eval")
80
+ #
81
+ # eval_entry = {
82
+ # "model": model,
83
+ # "base_model": base_model,
84
+ # "revision": revision,
85
+ # "precision": precision,
86
+ # "weight_type": weight_type,
87
+ # "status": "PENDING",
88
+ # "submitted_time": current_time,
89
+ # "model_type": model_type,
90
+ # "likes": model_info.likes,
91
+ # "params": model_size,
92
+ # "license": license,
93
+ # "private": False,
94
+ # }
95
+ #
96
+ # # Check for duplicate submission
97
+ # if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
98
+ # return styled_warning("This model has been already submitted.")
99
+ #
100
+ # print("Creating eval file")
101
+ # OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
102
+ # os.makedirs(OUT_DIR, exist_ok=True)
103
+ # out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
104
+ #
105
+ # with open(out_path, "w") as f:
106
+ # f.write(json.dumps(eval_entry))
107
+ #
108
+ # print("Uploading eval file")
109
+ # API.upload_file(
110
+ # path_or_fileobj=out_path,
111
+ # path_in_repo=out_path.split("eval-queue/")[1],
112
+ # repo_id=QUEUE_REPO,
113
+ # repo_type="dataset",
114
+ # commit_message=f"Add {model} to eval queue",
115
+ # )
116
+ #
117
+ # # Remove the local file
118
+ # os.remove(out_path)
119
+ #
120
+ # return styled_message(
121
+ # "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
122
+ # )
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tests/__init__.py ADDED
File without changes