Spaces:
Runtime error
Runtime error
import gradio as gr | |
import openai | |
import numpy as np | |
import time | |
import base64 | |
import ffmpeg | |
from sentence_transformers import SentenceTransformer | |
from audio2numpy import open_audio | |
import httpx | |
import json | |
import os | |
import requests | |
import urllib | |
import pydub | |
from os import path | |
from pydub import AudioSegment | |
import re | |
MUBERT_LICENSE = os.environ.get('MUBERT_LICENSE') | |
MUBERT_TOKEN = os.environ.get('MUBERT_TOKEN') | |
#img_to_text = gr.Blocks.load(name="spaces/pharma/CLIP-Interrogator") | |
img_to_text = gr.Blocks.load(name="spaces/fffiloni/CLIP-Interrogator-2") | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
from utils import get_tags_for_prompts, get_mubert_tags_embeddings | |
minilm = SentenceTransformer('all-MiniLM-L6-v2') | |
mubert_tags_embeddings = get_mubert_tags_embeddings(minilm) | |
##ββββββββββββββββββββββββββββββββββββ | |
MUBERT_LICENSE = os.environ.get('MUBERT_LICENSE') | |
MUBERT_TOKEN = os.environ.get('MUBERT_TOKEN') | |
##ββββββββββββββββββββββββββββββββββββ | |
def get_pat_token(): | |
r = httpx.post('https://api-b2b.mubert.com/v2/GetServiceAccess', | |
json={ | |
"method": "GetServiceAccess", | |
"params": { | |
"email":"[email protected]", | |
"phone":"+11234567890", | |
"license": MUBERT_LICENSE, | |
"token": MUBERT_TOKEN, | |
} | |
}) | |
rdata = json.loads(r.text) | |
assert rdata['status'] == 1, "probably incorrect e-mail" | |
pat = rdata['data']['pat'] | |
#print(f"pat: {pat}") | |
return pat | |
def get_music(pat, prompt, track_duration, gen_intensity, gen_mode): | |
if len(prompt) > 200: | |
prompt = prompt[:200] | |
r = httpx.post('https://api-b2b.mubert.com/v2/TTMRecordTrack', | |
json={ | |
"method": "TTMRecordTrack", | |
"params": | |
{ | |
"text": prompt, | |
"pat": pat, | |
"mode":gen_mode, | |
"duration":track_duration, | |
"intensity": gen_intensity, | |
"format": "wav" | |
} | |
}) | |
rdata = json.loads(r.text) | |
#print(f"rdata: {rdata}") | |
assert rdata['status'] == 1, rdata['error']['text'] | |
track = rdata['data']['tasks'][0]['download_link'] | |
print(track) | |
local_file_path = "sample.wav" | |
# Download the MP3 file from the URL | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7; rv:93.0) Gecko/20100101 Firefox/93.0'} | |
retries = 3 | |
delay = 5 # in seconds | |
while retries > 0: | |
response = requests.get(track, headers=headers) | |
if response.status_code == 200: | |
break | |
retries -= 1 | |
time.sleep(delay) | |
response = requests.get(track, headers=headers) | |
print(f"{response}") | |
# Save the downloaded content to a local file | |
with open(local_file_path, 'wb') as f: | |
f.write(response.content) | |
return "sample.wav", track | |
def get_results(text_prompt,track_duration,gen_intensity,gen_mode): | |
pat_token = get_pat_token() | |
music = get_music(pat_token, text_prompt, track_duration, gen_intensity, gen_mode) | |
return pat_token, music[0], music[1] | |
def get_prompts(uploaded_image, track_duration, gen_intensity, gen_mode, openai_api_key): | |
print("calling clip interrogator") | |
#prompt = img_to_text(uploaded_image, "ViT-L (best for Stable Diffusion 1.*)", "fast", fn_index=1)[0] | |
prompt = img_to_text(uploaded_image, 'best', 4, fn_index=1)[0] | |
print(prompt) | |
clean_prompt = clean_text(prompt) | |
print(f"prompt cleaned: {clean_prompt}") | |
musical_prompt = 'You did not use any OpenAI API key to pimp your result :)' | |
if openai_api_key is not None: | |
gpt_adaptation = try_api(prompt, openai_api_key) | |
if gpt_adaptation[0] != "oups": | |
musical_prompt = gpt_adaptation[0] | |
print(f"musical adapt: {musical_prompt}") | |
music_result = get_results(musical_prompt, track_duration, gen_intensity, gen_mode) | |
else: | |
music_result = get_results(clean_prompt, track_duration, gen_intensity, gen_mode) | |
else: | |
music_result = get_results(clean_prompt, track_duration, gen_intensity, gen_mode) | |
show_prompts = f""" | |
CLIP Interrogator Caption: '{prompt}' | |
β | |
OpenAI Musical Adaptation: '{musical_prompt}' | |
β | |
Audio file link: {music_result[2]} | |
""" | |
#wave_file = convert_mp3_to_wav(music_result[1]) | |
time.sleep(1) | |
return gr.Textbox.update(value=show_prompts, visible=True), music_result[1], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
def try_api(message, openai_api_key): | |
try: | |
response = call_api(message, openai_api_key) | |
return response, "<span class='openai_clear'>no error</span>" | |
except openai.error.Timeout as e: | |
#Handle timeout error, e.g. retry or log | |
#print(f"OpenAI API request timed out: {e}") | |
return "oups", f"<span class='openai_error'>OpenAI API request timed out: <br />{e}</span>" | |
except openai.error.APIError as e: | |
#Handle API error, e.g. retry or log | |
#print(f"OpenAI API returned an API Error: {e}") | |
return "oups", f"<span class='openai_error'>OpenAI API returned an API Error: <br />{e}</span>" | |
except openai.error.APIConnectionError as e: | |
#Handle connection error, e.g. check network or log | |
#print(f"OpenAI API request failed to connect: {e}") | |
return "oups", f"<span class='openai_error'>OpenAI API request failed to connect: <br />{e}</span>" | |
except openai.error.InvalidRequestError as e: | |
#Handle invalid request error, e.g. validate parameters or log | |
#print(f"OpenAI API request was invalid: {e}") | |
return "oups", f"<span class='openai_error'>OpenAI API request was invalid: <br />{e}</span>" | |
except openai.error.AuthenticationError as e: | |
#Handle authentication error, e.g. check credentials or log | |
#print(f"OpenAI API request was not authorized: {e}") | |
return "oups", f"<span class='openai_error'>OpenAI API request was not authorized: <br />{e}</span>" | |
except openai.error.PermissionError as e: | |
#Handle permission error, e.g. check scope or log | |
#print(f"OpenAI API request was not permitted: {e}") | |
return "oups", f"<span class='openai_error'>OpenAI API request was not permitted: <br />{e}</span>" | |
except openai.error.RateLimitError as e: | |
#Handle rate limit error, e.g. wait or log | |
#print(f"OpenAI API request exceeded rate limit: {e}") | |
return "oups", f"<span class='openai_error'>OpenAI API request exceeded rate limit: <br />{e}</span>" | |
def call_api(message, openai_api_key): | |
instruction = "Convert in less than 200 characters this image caption to a very concise musical description with musical terms, as if you wanted to describe a musical ambiance, stricly in English" | |
print("starting open ai") | |
augmented_prompt = f"{instruction}: '{message}'." | |
openai.api_key = openai_api_key | |
response = openai.Completion.create( | |
model="text-davinci-003", | |
prompt=augmented_prompt, | |
temperature=0.5, | |
max_tokens=2048, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0.6 | |
) | |
#print(response) | |
#return str(response.choices[0].text).split("\n",2)[2] | |
return str(response.choices[0].text).lstrip('\n') | |
def get_track_by_tags(tags, pat, duration, gen_intensity, gen_mode, maxit=20): | |
r = httpx.post('https://api-b2b.mubert.com/v2/RecordTrackTTM', | |
json={ | |
"method": "RecordTrackTTM", | |
"params": { | |
"pat": pat, | |
"duration": duration, | |
"format": "wav", | |
"intensity":gen_intensity, | |
"tags": tags, | |
"mode": gen_mode | |
} | |
}) | |
rdata = json.loads(r.text) | |
print(rdata) | |
#assert rdata['status'] == 1, rdata['error']['text'] | |
trackurl = rdata['data']['tasks'][0] | |
print('Generating track ', end='') | |
for i in range(maxit): | |
r = httpx.get(trackurl) | |
if r.status_code == 200: | |
return trackurl | |
time.sleep(1) | |
def generate_track_by_prompt(pat, prompt, duration, gen_intensity, gen_mode): | |
try: | |
_, tags = get_tags_for_prompts(minilm, mubert_tags_embeddings, prompt)[0] | |
result = get_track_by_tags(tags, pat, int(duration), gen_intensity, gen_mode) | |
print(result) | |
return result, ",".join(tags), "Success" | |
except Exception as e: | |
return None, "", str(e) | |
def convert_mp3_to_wav(mp3_filepath): | |
wave_file="file.wav" | |
sound = AudioSegment.from_mp3(mp3_filepath) | |
sound.export(wave_file, format="wav") | |
return wave_file | |
def remove_emoji(text): | |
emoji_pattern = re.compile("[" | |
u"\U0001F600-\U0001F64F" # emoticons | |
u"\U0001F300-\U0001F5FF" # symbols & pictographs | |
u"\U0001F680-\U0001F6FF" # transport & map symbols | |
u"\U0001F1E0-\U0001F1FF" # flags (iOS) | |
"]+", flags=re.UNICODE) | |
return emoji_pattern.sub(r'', text) | |
def remove_nonalphanumeric(text): | |
return re.sub(r'[^a-zA-Z0-9\s]', '', text) | |
def clean_text(text): | |
clean_text = remove_nonalphanumeric(text) | |
clean_text = remove_emoji(clean_text) | |
clean_text = re.sub(r'\d+', '', clean_text) # Remove any number | |
return clean_text | |
article = """ | |
<div class="footer"> | |
<p> | |
Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates π€ | |
</p> | |
</div> | |
<div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;"> | |
<p style="font-size: 0.8em;margin-bottom: 4px;">You may also like: </p> | |
<div id="may-like" style="display: flex;flex-wrap: wrap;align-items: center;height: 20px;"> | |
<svg height="20" width="122" style="margin-left:4px;margin-bottom: 6px;"> | |
<a href="https://huggingface.co/spaces/fffiloni/spectrogram-to-music" target="_blank"> | |
<image href="https://img.shields.io/badge/π€ Spaces-Riffusion-blue" src="https://img.shields.io/badge/π€ Spaces-Riffusion-blue.png" height="20"/> | |
</a> | |
</svg> | |
</div> | |
</div> | |
""" | |
with gr.Blocks(css="style.css") as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | |
Image to Music | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Sends an image in to <a href="https://huggingface.co/spaces/pharma/CLIP-Interrogator" target="_blank">CLIP Interrogator</a> | |
to generate a text prompt which is then run through | |
<a href="https://huggingface.co/Mubert" target="_blank">Mubert</a> text-to-music to generate music from the input image! | |
</p> | |
</div>""") | |
input_img = gr.Image(type="filepath", elem_id="input-img") | |
prompts_out = gr.Textbox(label="Text Captions", visible=False, info="If player do not work, try to copy/paste the link in a new browser window") | |
music_output = gr.Audio(label="Result", type="filepath", elem_id="music-output").style(height="5rem") | |
#music_url = gr.Textbox(max_lines=1, info="If player do not work, try to copy/paste the link in a new browser window") | |
#text_status = gr.Textbox(label="status") | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon = gr.HTML(community_icon_html, visible=False) | |
loading_icon = gr.HTML(loading_icon_html, visible=False) | |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) | |
with gr.Accordion(label="Music Generation Options", open=False): | |
openai_api_key = gr.Textbox(type="password", label="π Your OpenAI API Key (optional)", placeholder="sk-123abc...", info="You can use your OpenAI key to adapt CLIP Interrogator caption to a musical translation.") | |
track_duration = gr.Slider(minimum=20, maximum=120, value=55, ustep=5, label="Track duration", elem_id="duration-inp") | |
with gr.Row(): | |
gen_intensity = gr.Dropdown(choices=["low", "medium", "high"], value="medium", label="Intensity") | |
gen_mode = gr.Radio(label="mode", choices=["track", "loop"], value="loop") | |
generate = gr.Button("Generate Music from Image") | |
gr.HTML(article) | |
generate.click(get_prompts, inputs=[input_img,track_duration,gen_intensity,gen_mode, openai_api_key], outputs=[prompts_out, music_output, share_button, community_icon, loading_icon], api_name="i2m") | |
share_button.click(None, [], [], _js=share_js) | |
demo.queue(max_size=32).launch() |