Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,13 +6,17 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
|
|
|
|
9 |
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
|
13 |
-
|
14 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
15 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
|
|
|
|
16 |
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
|
17 |
# "impira/layoutlm-document-qa", ## ERR
|
18 |
# "Qwen/Qwen1.5-7B", ## 15GB
|
@@ -20,7 +24,6 @@ models = [
|
|
20 |
# "google/gemma-2-2b-jpn-it", ## high response time
|
21 |
# "impira/layoutlm-invoices", ## bad req
|
22 |
# "google/pix2struct-docvqa-large", ## bad req
|
23 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
24 |
# "google/gemma-7b-it", ## 17GB > 10GB
|
25 |
# "google/gemma-2b-it", ## high response time
|
26 |
# "HuggingFaceH4/zephyr-7b-beta", ## high response time
|
@@ -28,14 +31,23 @@ models = [
|
|
28 |
# "microsoft/phi-2", ## high response time
|
29 |
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
|
30 |
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
|
31 |
-
"tiiuae/falcon-7b-instruct",
|
32 |
# "google/flan-t5-xxl" ## high respons time
|
33 |
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
|
34 |
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
|
35 |
]
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Global variable for selected model
|
38 |
-
|
|
|
|
|
39 |
|
40 |
# Initialize the parser
|
41 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
@@ -67,24 +79,12 @@ file_extractor = {
|
|
67 |
'.svg': parser, # SVG files (vector format, may contain embedded text)
|
68 |
}
|
69 |
|
70 |
-
# Embedding model and index initialization (to be populated by uploaded files)
|
71 |
-
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") ## Works good and fast
|
72 |
-
# embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en") ## works good
|
73 |
-
# embed_model2 = HuggingFaceEmbedding(model_name="NeuML/pubmedbert-base-embeddings") ## works good
|
74 |
-
|
75 |
-
# sentence-transformers/distilbert-base-nli-mean-tokens
|
76 |
-
# BAAI/bge-large-en
|
77 |
-
# embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
78 |
-
|
79 |
-
# Global variable to store documents loaded from user-uploaded files
|
80 |
-
vector_index = None
|
81 |
-
|
82 |
-
|
83 |
# File processing function
|
84 |
-
def load_files(file_path: str):
|
85 |
try:
|
86 |
global vector_index
|
87 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
|
|
88 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
89 |
print(f"Parsing done for {file_path}")
|
90 |
filename = os.path.basename(file_path)
|
@@ -94,9 +94,9 @@ def load_files(file_path: str):
|
|
94 |
|
95 |
|
96 |
# Function to handle the selected model from dropdown
|
97 |
-
def
|
98 |
-
global
|
99 |
-
|
100 |
# print(f"Model selected: {selected_model_name}")
|
101 |
# return f"Model set to: {selected_model_name}"
|
102 |
|
@@ -106,51 +106,68 @@ def respond(message, history):
|
|
106 |
try:
|
107 |
# Initialize the LLM with the selected model
|
108 |
llm = HuggingFaceInferenceAPI(
|
109 |
-
model_name=
|
110 |
-
contextWindow
|
111 |
-
maxTokens
|
112 |
-
temperature=0.
|
113 |
-
topP=0.
|
114 |
-
#
|
|
|
|
|
115 |
)
|
116 |
|
117 |
-
# Check selected model
|
118 |
-
# print(f"Using model: {selected_model_name}")
|
119 |
-
|
120 |
# Set up the query engine with the selected LLM
|
121 |
query_engine = vector_index.as_query_engine(llm=llm)
|
122 |
bot_message = query_engine.query(message)
|
123 |
|
124 |
-
print(f"\n{datetime.now()}:{
|
125 |
-
return f"{
|
126 |
except Exception as e:
|
127 |
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
|
128 |
return "Please upload a file."
|
129 |
return f"An error occurred: {e}"
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
# UI Setup
|
133 |
-
with gr.Blocks() as demo:
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
clear = gr.ClearButton()
|
139 |
-
btn = gr.Button("Submit", variant='primary')
|
140 |
-
output = gr.Text(label='Vector Index')
|
141 |
-
model_dropdown = gr.Dropdown(models, label="Step-2: Select Model", interactive=True)
|
142 |
-
|
143 |
-
with gr.Column(scale=3):
|
144 |
-
gr.ChatInterface(
|
145 |
-
fn=respond,
|
146 |
-
chatbot=gr.Chatbot(height=500),
|
147 |
-
textbox=gr.Textbox(placeholder="Step-3: Ask me questions on the uploaded document!", container=False, scale=7)
|
148 |
-
)
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
# Set up Gradio interactions
|
151 |
-
|
152 |
-
btn.click(fn=load_files, inputs=file_input, outputs=output)
|
153 |
-
clear.click(lambda: [None] *
|
154 |
|
155 |
# Launch the demo with a public link option
|
156 |
if __name__ == "__main__":
|
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import gradio as gr
|
9 |
+
import markdowm as md
|
10 |
+
import base64
|
11 |
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
14 |
|
15 |
+
llm_models = [
|
16 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
17 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
18 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
19 |
+
"tiiuae/falcon-7b-instruct",
|
20 |
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
|
21 |
# "impira/layoutlm-document-qa", ## ERR
|
22 |
# "Qwen/Qwen1.5-7B", ## 15GB
|
|
|
24 |
# "google/gemma-2-2b-jpn-it", ## high response time
|
25 |
# "impira/layoutlm-invoices", ## bad req
|
26 |
# "google/pix2struct-docvqa-large", ## bad req
|
|
|
27 |
# "google/gemma-7b-it", ## 17GB > 10GB
|
28 |
# "google/gemma-2b-it", ## high response time
|
29 |
# "HuggingFaceH4/zephyr-7b-beta", ## high response time
|
|
|
31 |
# "microsoft/phi-2", ## high response time
|
32 |
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
|
33 |
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
|
|
|
34 |
# "google/flan-t5-xxl" ## high respons time
|
35 |
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
|
36 |
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
|
37 |
]
|
38 |
|
39 |
+
embed_models = [
|
40 |
+
"BAAI/bge-small-en-v1.5", # 33.4M
|
41 |
+
"NeuML/pubmedbert-base-embeddings",
|
42 |
+
"sentence-transformers/all-mpnet-base-v2" # 109M
|
43 |
+
"BAAI/llm-embedder", # 109M
|
44 |
+
"BAAI/bge-large-en" # 335
|
45 |
+
]
|
46 |
+
|
47 |
# Global variable for selected model
|
48 |
+
selected_llm_model_name = llm_models[0] # Default to the first model in the list
|
49 |
+
selected_embed_model_name = embed_models[0] # Default to the first model in the list
|
50 |
+
vector_index = None
|
51 |
|
52 |
# Initialize the parser
|
53 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
|
|
79 |
'.svg': parser, # SVG files (vector format, may contain embedded text)
|
80 |
}
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# File processing function
|
83 |
+
def load_files(file_path: str, embed_model_name: str):
|
84 |
try:
|
85 |
global vector_index
|
86 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
87 |
+
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
88 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
89 |
print(f"Parsing done for {file_path}")
|
90 |
filename = os.path.basename(file_path)
|
|
|
94 |
|
95 |
|
96 |
# Function to handle the selected model from dropdown
|
97 |
+
def set_llm_model(selected_model):
|
98 |
+
global selected_llm_model_name
|
99 |
+
selected_llm_model_name = selected_model # Update the global variable
|
100 |
# print(f"Model selected: {selected_model_name}")
|
101 |
# return f"Model set to: {selected_model_name}"
|
102 |
|
|
|
106 |
try:
|
107 |
# Initialize the LLM with the selected model
|
108 |
llm = HuggingFaceInferenceAPI(
|
109 |
+
model_name=selected_llm_model_name,
|
110 |
+
contextWindow=8192, # Context window size (typically max length of the model)
|
111 |
+
maxTokens=1024, # Tokens per response generation (512-1024 works well for detailed answers)
|
112 |
+
temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info)
|
113 |
+
topP=0.9, # Top-p sampling to control diversity while retaining quality
|
114 |
+
frequencyPenalty=0.5, # Slight penalty to avoid repetition
|
115 |
+
presencePenalty=0.5, # Encourages exploration without digressing too much
|
116 |
+
token=os.getenv("TOKEN")
|
117 |
)
|
118 |
|
|
|
|
|
|
|
119 |
# Set up the query engine with the selected LLM
|
120 |
query_engine = vector_index.as_query_engine(llm=llm)
|
121 |
bot_message = query_engine.query(message)
|
122 |
|
123 |
+
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
124 |
+
return f"{selected_llm_model_name}:\n{str(bot_message)}"
|
125 |
except Exception as e:
|
126 |
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
|
127 |
return "Please upload a file."
|
128 |
return f"An error occurred: {e}"
|
129 |
|
130 |
+
def encode_image(image_path):
|
131 |
+
with open(image_path, "rb") as image_file:
|
132 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
133 |
+
|
134 |
+
# Encode the images
|
135 |
+
github_logo_encoded = encode_image("Images/github-logo.png")
|
136 |
+
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
|
137 |
+
website_logo_encoded = encode_image("Images/ai-logo.png")
|
138 |
|
139 |
# UI Setup
|
140 |
+
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
|
141 |
+
gr.Markdown("# DocBot📄🤖")
|
142 |
+
with gr.Tabs():
|
143 |
+
with gr.TabItem("Intro"):
|
144 |
+
gr.Markdown(md.description)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
with gr.TabItem("DocBot"):
|
147 |
+
with gr.Row():
|
148 |
+
with gr.Column(scale=1):
|
149 |
+
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
|
150 |
+
gr.Markdown("Dont know what to select check out in Intro tab")
|
151 |
+
embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
|
152 |
+
with gr.Row():
|
153 |
+
clear = gr.ClearButton()
|
154 |
+
btn = gr.Button("Submit", variant='primary')
|
155 |
+
output = gr.Text(label='Vector Index')
|
156 |
+
llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
|
157 |
+
with gr.Column(scale=3):
|
158 |
+
gr.ChatInterface(
|
159 |
+
fn=respond,
|
160 |
+
chatbot=gr.Chatbot(height=500),
|
161 |
+
theme = "soft",
|
162 |
+
show_progress='full',
|
163 |
+
# cache_mode='lazy',
|
164 |
+
textbox=gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False)
|
165 |
+
)
|
166 |
+
gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
|
167 |
# Set up Gradio interactions
|
168 |
+
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown)
|
169 |
+
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
|
170 |
+
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
|
171 |
|
172 |
# Launch the demo with a public link option
|
173 |
if __name__ == "__main__":
|