Spaces:
Running
Running
Sarath0x8f
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -29,7 +29,7 @@ models = [
|
|
29 |
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
|
30 |
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
|
31 |
"tiiuae/falcon-7b-instruct",
|
32 |
-
"google/flan-t5-xxl"
|
33 |
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
|
34 |
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
|
35 |
]
|
@@ -68,7 +68,11 @@ file_extractor = {
|
|
68 |
}
|
69 |
|
70 |
# Embedding model and index initialization (to be populated by uploaded files)
|
71 |
-
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
|
|
|
|
|
|
|
|
72 |
# embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
73 |
|
74 |
# Global variable to store documents loaded from user-uploaded files
|
@@ -102,7 +106,7 @@ def respond(message, history):
|
|
102 |
# Initialize the LLM with the selected model
|
103 |
llm = HuggingFaceInferenceAPI(
|
104 |
model_name=selected_model_name,
|
105 |
-
token=os.getenv("TOKEN")
|
106 |
)
|
107 |
|
108 |
# Check selected model
|
|
|
29 |
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
|
30 |
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
|
31 |
"tiiuae/falcon-7b-instruct",
|
32 |
+
# "google/flan-t5-xxl" ## high respons time
|
33 |
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
|
34 |
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
|
35 |
]
|
|
|
68 |
}
|
69 |
|
70 |
# Embedding model and index initialization (to be populated by uploaded files)
|
71 |
+
# embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
72 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en")
|
73 |
+
|
74 |
+
# sentence-transformers/distilbert-base-nli-mean-tokens
|
75 |
+
# BAAI/bge-large-en
|
76 |
# embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
77 |
|
78 |
# Global variable to store documents loaded from user-uploaded files
|
|
|
106 |
# Initialize the LLM with the selected model
|
107 |
llm = HuggingFaceInferenceAPI(
|
108 |
model_name=selected_model_name,
|
109 |
+
# token=os.getenv("TOKEN")
|
110 |
)
|
111 |
|
112 |
# Check selected model
|