Sarath0x8f commited on
Commit
9b2e64c
·
verified ·
1 Parent(s): 2655969

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -29,7 +29,7 @@ models = [
29
  # "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
30
  # "mosaicml/mpt-7b-instruct", ## 13GB>10GB
31
  "tiiuae/falcon-7b-instruct",
32
- "google/flan-t5-xxl"
33
  # "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
34
  # "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
35
  ]
@@ -68,7 +68,11 @@ file_extractor = {
68
  }
69
 
70
  # Embedding model and index initialization (to be populated by uploaded files)
71
- embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
 
 
 
 
72
  # embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
73
 
74
  # Global variable to store documents loaded from user-uploaded files
@@ -102,7 +106,7 @@ def respond(message, history):
102
  # Initialize the LLM with the selected model
103
  llm = HuggingFaceInferenceAPI(
104
  model_name=selected_model_name,
105
- token=os.getenv("TOKEN")
106
  )
107
 
108
  # Check selected model
 
29
  # "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
30
  # "mosaicml/mpt-7b-instruct", ## 13GB>10GB
31
  "tiiuae/falcon-7b-instruct",
32
+ # "google/flan-t5-xxl" ## high respons time
33
  # "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
34
  # "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
35
  ]
 
68
  }
69
 
70
  # Embedding model and index initialization (to be populated by uploaded files)
71
+ # embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
72
+ embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en")
73
+
74
+ # sentence-transformers/distilbert-base-nli-mean-tokens
75
+ # BAAI/bge-large-en
76
  # embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
77
 
78
  # Global variable to store documents loaded from user-uploaded files
 
106
  # Initialize the LLM with the selected model
107
  llm = HuggingFaceInferenceAPI(
108
  model_name=selected_model_name,
109
+ # token=os.getenv("TOKEN")
110
  )
111
 
112
  # Check selected model