Spaces:
Running
Running
Sarath0x8f
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ llm_models = [
|
|
17 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
18 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
19 |
"tiiuae/falcon-7b-instruct",
|
|
|
20 |
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
|
21 |
# "impira/layoutlm-document-qa", ## ERR
|
22 |
# "Qwen/Qwen1.5-7B", ## 15GB
|
@@ -39,7 +40,6 @@ llm_models = [
|
|
39 |
embed_models = [
|
40 |
"BAAI/bge-small-en-v1.5", # 33.4M
|
41 |
"NeuML/pubmedbert-base-embeddings",
|
42 |
-
"sentence-transformers/all-mpnet-base-v2", # 109M
|
43 |
"BAAI/llm-embedder", # 109M
|
44 |
"BAAI/bge-large-en" # 335M
|
45 |
]
|
@@ -108,7 +108,7 @@ def respond(message, history):
|
|
108 |
llm = HuggingFaceInferenceAPI(
|
109 |
model_name=selected_llm_model_name,
|
110 |
contextWindow=8192, # Context window size (typically max length of the model)
|
111 |
-
maxTokens=
|
112 |
temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info)
|
113 |
topP=0.9, # Top-p sampling to control diversity while retaining quality
|
114 |
frequencyPenalty=0.5, # Slight penalty to avoid repetition
|
@@ -120,8 +120,8 @@ def respond(message, history):
|
|
120 |
query_engine = vector_index.as_query_engine(llm=llm)
|
121 |
bot_message = query_engine.query(message)
|
122 |
|
123 |
-
print(f"\n{datetime.now()}:{selected_llm_model_name}
|
124 |
-
return f"{selected_llm_model_name}:\n
|
125 |
except Exception as e:
|
126 |
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
|
127 |
return "Please upload a file."
|
@@ -144,14 +144,16 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]),
|
|
144 |
gr.Markdown(md.description)
|
145 |
|
146 |
with gr.TabItem("DocBot"):
|
|
|
|
|
147 |
with gr.Row():
|
148 |
with gr.Column(scale=1):
|
149 |
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
|
150 |
-
gr.Markdown("Dont know what to select check out in Intro tab")
|
151 |
embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
|
152 |
with gr.Row():
|
153 |
-
clear = gr.ClearButton()
|
154 |
btn = gr.Button("Submit", variant='primary')
|
|
|
155 |
output = gr.Text(label='Vector Index')
|
156 |
llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
|
157 |
with gr.Column(scale=3):
|
|
|
17 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
18 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
19 |
"tiiuae/falcon-7b-instruct",
|
20 |
+
# "mistralai/Mixtral-8x22B-Instruct-v0.1", ## 281GB>10GB
|
21 |
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
|
22 |
# "impira/layoutlm-document-qa", ## ERR
|
23 |
# "Qwen/Qwen1.5-7B", ## 15GB
|
|
|
40 |
embed_models = [
|
41 |
"BAAI/bge-small-en-v1.5", # 33.4M
|
42 |
"NeuML/pubmedbert-base-embeddings",
|
|
|
43 |
"BAAI/llm-embedder", # 109M
|
44 |
"BAAI/bge-large-en" # 335M
|
45 |
]
|
|
|
108 |
llm = HuggingFaceInferenceAPI(
|
109 |
model_name=selected_llm_model_name,
|
110 |
contextWindow=8192, # Context window size (typically max length of the model)
|
111 |
+
maxTokens=1024, # Tokens per response generation (512-1024 works well for detailed answers)
|
112 |
temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info)
|
113 |
topP=0.9, # Top-p sampling to control diversity while retaining quality
|
114 |
frequencyPenalty=0.5, # Slight penalty to avoid repetition
|
|
|
120 |
query_engine = vector_index.as_query_engine(llm=llm)
|
121 |
bot_message = query_engine.query(message)
|
122 |
|
123 |
+
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
124 |
+
return f"{selected_llm_model_name}:\n{str(bot_message)}"
|
125 |
except Exception as e:
|
126 |
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
|
127 |
return "Please upload a file."
|
|
|
144 |
gr.Markdown(md.description)
|
145 |
|
146 |
with gr.TabItem("DocBot"):
|
147 |
+
with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False):
|
148 |
+
guid = gr.Markdown(md.guide)
|
149 |
with gr.Row():
|
150 |
with gr.Column(scale=1):
|
151 |
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
|
152 |
+
# gr.Markdown("Dont know what to select check out in Intro tab")
|
153 |
embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
|
154 |
with gr.Row():
|
|
|
155 |
btn = gr.Button("Submit", variant='primary')
|
156 |
+
clear = gr.ClearButton()
|
157 |
output = gr.Text(label='Vector Index')
|
158 |
llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
|
159 |
with gr.Column(scale=3):
|