Sarath0x8f commited on
Commit
c1c2b2d
·
verified ·
1 Parent(s): 37b6f13

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -17,6 +17,7 @@ llm_models = [
17
  "meta-llama/Meta-Llama-3-8B-Instruct",
18
  "mistralai/Mistral-7B-Instruct-v0.2",
19
  "tiiuae/falcon-7b-instruct",
 
20
  # "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
21
  # "impira/layoutlm-document-qa", ## ERR
22
  # "Qwen/Qwen1.5-7B", ## 15GB
@@ -39,7 +40,6 @@ llm_models = [
39
  embed_models = [
40
  "BAAI/bge-small-en-v1.5", # 33.4M
41
  "NeuML/pubmedbert-base-embeddings",
42
- "sentence-transformers/all-mpnet-base-v2", # 109M
43
  "BAAI/llm-embedder", # 109M
44
  "BAAI/bge-large-en" # 335M
45
  ]
@@ -108,7 +108,7 @@ def respond(message, history):
108
  llm = HuggingFaceInferenceAPI(
109
  model_name=selected_llm_model_name,
110
  contextWindow=8192, # Context window size (typically max length of the model)
111
- maxTokens=2048, # Tokens per response generation (512-1024 works well for detailed answers)
112
  temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info)
113
  topP=0.9, # Top-p sampling to control diversity while retaining quality
114
  frequencyPenalty=0.5, # Slight penalty to avoid repetition
@@ -120,8 +120,8 @@ def respond(message, history):
120
  query_engine = vector_index.as_query_engine(llm=llm)
121
  bot_message = query_engine.query(message)
122
 
123
- print(f"\n{datetime.now()}:{selected_llm_model_name} :: {message} --> {str(bot_message)}\n")
124
- return f"{selected_llm_model_name}:\n\n{str(bot_message)}"
125
  except Exception as e:
126
  if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
127
  return "Please upload a file."
@@ -144,14 +144,16 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]),
144
  gr.Markdown(md.description)
145
 
146
  with gr.TabItem("DocBot"):
 
 
147
  with gr.Row():
148
  with gr.Column(scale=1):
149
  file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
150
- gr.Markdown("Dont know what to select check out in Intro tab")
151
  embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
152
  with gr.Row():
153
- clear = gr.ClearButton()
154
  btn = gr.Button("Submit", variant='primary')
 
155
  output = gr.Text(label='Vector Index')
156
  llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
157
  with gr.Column(scale=3):
 
17
  "meta-llama/Meta-Llama-3-8B-Instruct",
18
  "mistralai/Mistral-7B-Instruct-v0.2",
19
  "tiiuae/falcon-7b-instruct",
20
+ # "mistralai/Mixtral-8x22B-Instruct-v0.1", ## 281GB>10GB
21
  # "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
22
  # "impira/layoutlm-document-qa", ## ERR
23
  # "Qwen/Qwen1.5-7B", ## 15GB
 
40
  embed_models = [
41
  "BAAI/bge-small-en-v1.5", # 33.4M
42
  "NeuML/pubmedbert-base-embeddings",
 
43
  "BAAI/llm-embedder", # 109M
44
  "BAAI/bge-large-en" # 335M
45
  ]
 
108
  llm = HuggingFaceInferenceAPI(
109
  model_name=selected_llm_model_name,
110
  contextWindow=8192, # Context window size (typically max length of the model)
111
+ maxTokens=1024, # Tokens per response generation (512-1024 works well for detailed answers)
112
  temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info)
113
  topP=0.9, # Top-p sampling to control diversity while retaining quality
114
  frequencyPenalty=0.5, # Slight penalty to avoid repetition
 
120
  query_engine = vector_index.as_query_engine(llm=llm)
121
  bot_message = query_engine.query(message)
122
 
123
+ print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
124
+ return f"{selected_llm_model_name}:\n{str(bot_message)}"
125
  except Exception as e:
126
  if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
127
  return "Please upload a file."
 
144
  gr.Markdown(md.description)
145
 
146
  with gr.TabItem("DocBot"):
147
+ with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False):
148
+ guid = gr.Markdown(md.guide)
149
  with gr.Row():
150
  with gr.Column(scale=1):
151
  file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
152
+ # gr.Markdown("Dont know what to select check out in Intro tab")
153
  embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
154
  with gr.Row():
 
155
  btn = gr.Button("Submit", variant='primary')
156
+ clear = gr.ClearButton()
157
  output = gr.Text(label='Vector Index')
158
  llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
159
  with gr.Column(scale=3):