Spaces:
Build error
Build error
Satyajithchary
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,29 @@
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
import torch
|
6 |
-
|
7 |
-
|
8 |
-
!git clone --recursive https://github.com/frank-xwang/UnSAM.git
|
9 |
-
!python -m pip install 'git+https://github.com/MaureenZOU/detectron2-xyz.git'
|
10 |
-
%cd UnSAM
|
11 |
-
!python -m pip install -r requirements.txt
|
12 |
-
|
13 |
-
# uncomment the following lines if you want to run with GPU
|
14 |
-
%cd whole_image_segmentation/mask2former/modeling/pixel_decoder/ops
|
15 |
-
!sh make.sh
|
16 |
-
# clone and install Mask2Former
|
17 |
-
!git clone https://github.com/facebookresearch/Mask2Former.git
|
18 |
-
%cd Mask2Former
|
19 |
-
!pip install -U opencv-python
|
20 |
-
!pip install git+https://github.com/cocodataset/panopticapi.git
|
21 |
-
!pip install -r requirements.txt
|
22 |
-
%cd mask2former/modeling/pixel_decoder/ops
|
23 |
-
!python setup.py build install
|
24 |
-
%cd ../../../../
|
25 |
-
%cd /kaggle/working/Mask2Former
|
26 |
-
#%cd /kaggle/working/UnSAM/whole_image_segmentation/mask2former/modeling/pixel_decoder/ops/Mask2Former
|
27 |
-
|
28 |
-
#%cd /kaggle/working/UnSAM/whole_image_segmentation/mask2former
|
29 |
-
import detectron2
|
30 |
-
from detectron2.utils.logger import setup_logger
|
31 |
-
setup_logger()
|
32 |
-
setup_logger(name="mask2former")
|
33 |
-
|
34 |
-
# import some common libraries
|
35 |
-
import numpy as np
|
36 |
-
import cv2
|
37 |
import torch
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
from detectron2.engine import DefaultPredictor
|
43 |
from detectron2.config import get_cfg
|
44 |
from detectron2.projects.deeplab import add_deeplab_config
|
45 |
-
from detectron2.
|
46 |
from mask2former import add_maskformer2_config
|
47 |
-
from
|
|
|
48 |
|
49 |
-
|
|
|
50 |
cfg = get_cfg()
|
51 |
cfg.set_new_allowed(True)
|
52 |
add_deeplab_config(cfg)
|
53 |
add_maskformer2_config(cfg)
|
54 |
-
cfg.merge_from_file(
|
55 |
cfg.MODEL.WEIGHTS = weights_path
|
56 |
-
cfg.MODEL.DEVICE =
|
57 |
-
|
58 |
-
return
|
59 |
|
60 |
def area(mask):
|
61 |
-
if mask.size == 0:
|
62 |
-
return 0
|
63 |
return np.count_nonzero(mask) / mask.size
|
64 |
|
65 |
def vis_mask(input, mask, mask_color):
|
@@ -71,7 +35,7 @@ def vis_mask(input, mask, mask_color):
|
|
71 |
def show_image(I, pool):
|
72 |
already_painted = np.zeros(np.array(I).shape[:2])
|
73 |
input = I.copy()
|
74 |
-
for mask in
|
75 |
already_painted += mask.astype(np.uint8)
|
76 |
overlap = (already_painted == 2)
|
77 |
if np.sum(overlap) != 0:
|
@@ -79,40 +43,56 @@ def show_image(I, pool):
|
|
79 |
already_painted -= overlap
|
80 |
input = vis_mask(input, mask, random_color(rgb=True))
|
81 |
return input
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
"/kaggle/working/UnSAM/whole_image_segmentation/configs/maskformer2_R50_bs16_50ep.yaml",
|
86 |
-
"/kaggle/working/Mask2Former/unsam_sa1b_4perc_ckpt_200k.pth"
|
87 |
-
)
|
88 |
-
unsam_plus_predictor = setup_predictor(
|
89 |
-
"/kaggle/working/UnSAM/whole_image_segmentation/configs/maskformer2_R50_bs16_50ep.yaml",
|
90 |
-
"/kaggle/working/Mask2Former/unsam_plus_sa1b_1perc_ckpt_50k.pth"
|
91 |
-
)
|
92 |
|
93 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
uploaded_file = st.file_uploader("Choose an image...", type="png")
|
97 |
|
98 |
if uploaded_file is not None:
|
99 |
-
|
100 |
-
image = np.array(Image.open(uploaded_file))
|
101 |
|
102 |
-
|
103 |
-
st.image(image, caption='Original Image', use_column_width=True)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
sorted_unsam_plus_masks = sorted(unsam_plus_masks, key=lambda m: area(m), reverse=True)
|
109 |
-
unsam_plus_image = show_image(image, sorted_unsam_plus_masks)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
unsam_image = show_image(image, sorted_unsam_masks)
|
116 |
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
6 |
from detectron2.config import get_cfg
|
7 |
from detectron2.projects.deeplab import add_deeplab_config
|
8 |
+
from detectron2.engine import DefaultPredictor
|
9 |
from mask2former import add_maskformer2_config
|
10 |
+
from detectron2.utils.colormap import random_color
|
11 |
+
import os
|
12 |
|
13 |
+
@st.cache_resource
|
14 |
+
def setup_config(weights_path):
|
15 |
cfg = get_cfg()
|
16 |
cfg.set_new_allowed(True)
|
17 |
add_deeplab_config(cfg)
|
18 |
add_maskformer2_config(cfg)
|
19 |
+
cfg.merge_from_file("configs/maskformer2_R50_bs16_50ep.yaml")
|
20 |
cfg.MODEL.WEIGHTS = weights_path
|
21 |
+
cfg.MODEL.DEVICE = "cpu" # Use CPU for inference
|
22 |
+
cfg.freeze()
|
23 |
+
return cfg
|
24 |
|
25 |
def area(mask):
|
26 |
+
if mask.size == 0: return 0
|
|
|
27 |
return np.count_nonzero(mask) / mask.size
|
28 |
|
29 |
def vis_mask(input, mask, mask_color):
|
|
|
35 |
def show_image(I, pool):
|
36 |
already_painted = np.zeros(np.array(I).shape[:2])
|
37 |
input = I.copy()
|
38 |
+
for mask in pool:
|
39 |
already_painted += mask.astype(np.uint8)
|
40 |
overlap = (already_painted == 2)
|
41 |
if np.sum(overlap) != 0:
|
|
|
43 |
already_painted -= overlap
|
44 |
input = vis_mask(input, mask, random_color(rgb=True))
|
45 |
return input
|
46 |
+
import gdown
|
47 |
|
48 |
+
gdown.download("https://drive.google.com/uc?id=1sCZM5j2pQr34-scSEkgG7VmUaHJc8n4d", "unsam_plus_sa1b_1perc_ckpt_50k.pth", quiet=False)
|
49 |
+
gdown.download("https://drive.google.com/uc?id=1qUdZ2ELU_5SNTsmx3Q0wSA87u4SebiO4", "unsam_sa1b_4perc_ckpt_200k.pth", quiet=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
@st.cache_data
|
52 |
+
def process_image(image, model_type):
|
53 |
+
if model_type == "UNSAM+":
|
54 |
+
weights_path = "unsam_plus_sa1b_1perc_ckpt_50k.pth"
|
55 |
+
else: # UNSAM
|
56 |
+
weights_path = "unsam_sa1b_4perc_ckpt_200k.pth"
|
57 |
+
|
58 |
+
cfg = setup_config(weights_path)
|
59 |
+
predictor = DefaultPredictor(cfg)
|
60 |
+
|
61 |
+
inputs = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
62 |
+
outputs = predictor(inputs)['instances']
|
63 |
+
|
64 |
+
masks = []
|
65 |
+
for score, mask in zip(outputs.scores, outputs.pred_masks):
|
66 |
+
if score < 0.5: continue
|
67 |
+
masks.append(mask.cpu().numpy())
|
68 |
+
|
69 |
+
sorted_masks = sorted(masks, key=lambda m: area(m), reverse=True)
|
70 |
+
result_image = show_image(np.array(image), sorted_masks)
|
71 |
+
|
72 |
+
return result_image
|
73 |
+
|
74 |
+
st.title("UNSAM and UNSAM+ Image Segmentation")
|
75 |
|
76 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
77 |
|
78 |
if uploaded_file is not None:
|
79 |
+
image = Image.open(uploaded_file)
|
|
|
80 |
|
81 |
+
col1, col2, col3 = st.columns(3)
|
|
|
82 |
|
83 |
+
with col1:
|
84 |
+
st.header("Original Image")
|
85 |
+
st.image(image, use_column_width=True)
|
|
|
|
|
86 |
|
87 |
+
with col2:
|
88 |
+
st.header("UNSAM+ Output")
|
89 |
+
unsam_plus_output = process_image(image, "UNSAM+")
|
90 |
+
st.image(unsam_plus_output, use_column_width=True)
|
|
|
91 |
|
92 |
+
with col3:
|
93 |
+
st.header("UNSAM Output")
|
94 |
+
unsam_output = process_image(image, "UNSAM")
|
95 |
+
st.image(unsam_output, use_column_width=True)
|
96 |
+
|
97 |
+
else:
|
98 |
+
st.write("Please upload an image to see the segmentation results.")
|