Spaces:
Runtime error
Runtime error
pip install --upgrade pip | |
import torch | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): | |
predictor.set_image(<your_image>) | |
masks, _, _ = predictor.predict(<input_prompts>) | |
import gradio as gr | |
import torch | |
import numpy as np | |
from PIL import Image | |
from segment_anything_2 import SAM2ImagePredictor, build_sam2 | |
# Load your model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
checkpoint = "checkpoints/sam2_hiera_large.pt" | |
model_cfg = "sam2_hiera_l.yaml" | |
model = build_sam2(model_cfg, checkpoint, device=device) | |
predictor = SAM2ImagePredictor(model) | |
def process_image(image, input_points, input_labels): | |
input_point = np.array([input_points]) | |
input_label = np.array([input_labels]) | |
# Use predictor to predict mask | |
masks, scores, logits = predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
multimask_output=True, | |
) | |
return Image.fromarray(masks[0].astype(np.uint8)) | |
# Define Gradio Interface | |
image_input = gr.inputs.Image(type="pil") | |
point_input = gr.inputs.Number(label="Point X,Y (comma-separated)") | |
label_input = gr.inputs.Radio([0, 1], label="Label (0 for background, 1 for object)") | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=[image_input, point_input, label_input], | |
outputs="image", | |
description="Interactive tool for mask prediction with Segment Anything 2 and CUTIE" | |
) | |
iface.launch() | |