Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,86 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoFeatureExtractor, YolosForObjectDetection
|
2 |
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import io
|
7 |
+
import numpy as np
|
8 |
|
9 |
+
|
10 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
11 |
+
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
12 |
+
|
13 |
+
|
14 |
+
def process_class_list(classes_string: str):
|
15 |
+
if classes_string == "":
|
16 |
+
return []
|
17 |
+
classes_list = classes_string.split(",")
|
18 |
+
classes_list = [x.strip() for x in classes_list]
|
19 |
+
return classes_list
|
20 |
+
|
21 |
+
def model_inference(img, model_name: str, prob_threshold: int, classes_to_show = str):
|
22 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}")
|
23 |
+
model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}")
|
24 |
+
|
25 |
+
img = Image.fromarray(img)
|
26 |
+
|
27 |
+
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(pixel_values, output_attentions=True)
|
31 |
+
|
32 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
33 |
+
keep = probas.max(-1).values > prob_threshold
|
34 |
+
|
35 |
+
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
|
36 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
37 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes']
|
38 |
+
|
39 |
+
classes_list = process_class_list(classes_to_show)
|
40 |
+
res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list)
|
41 |
+
|
42 |
+
return res_img
|
43 |
+
|
44 |
+
def plot_results(pil_img, prob, boxes, model, classes_list):
|
45 |
+
plt.figure(figsize=(16,10))
|
46 |
+
plt.imshow(pil_img)
|
47 |
+
ax = plt.gca()
|
48 |
+
colors = COLORS * 100
|
49 |
+
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
|
50 |
+
cl = p.argmax()
|
51 |
+
object_class = model.config.id2label[cl.item()]
|
52 |
+
|
53 |
+
if len(classes_list) > 0 :
|
54 |
+
if object_class not in classes_list:
|
55 |
+
continue
|
56 |
+
|
57 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
|
58 |
+
fill=False, color=c, linewidth=3))
|
59 |
+
text = f'{object_class}: {p[cl]:0.2f}'
|
60 |
+
ax.text(xmin, ymin, text, fontsize=15,
|
61 |
+
bbox=dict(facecolor='yellow', alpha=0.5))
|
62 |
+
plt.axis('off')
|
63 |
+
return fig2img(plt.gcf())
|
64 |
+
|
65 |
+
def fig2img(fig):
|
66 |
+
buf = io.BytesIO()
|
67 |
+
fig.savefig(buf)
|
68 |
+
buf.seek(0)
|
69 |
+
img = Image.open(buf)
|
70 |
+
return img
|
71 |
+
|
72 |
+
description = """YOLOS - Object Detection"""
|
73 |
+
|
74 |
+
image_in = gr.components.Image()
|
75 |
+
image_out = gr.components.Image()
|
76 |
+
model_choice = gr.components.Dropdown(["yolos-tiny", "yolos-small", "yolos-base", "yolos-small-300", "yolos-small-dwr"], value="yolos-small", label="YOLOS Model")
|
77 |
+
prob_threshold_slider = gr.components.Slider(minimum=0, maximum=1.0, step=0.01, value=0.9, label="Probability Threshold")
|
78 |
+
classes_to_show = gr.components.Textbox(placeholder="e.g. person, truck", label="Classes to use (defaulted to detect all classes)")
|
79 |
+
|
80 |
+
Iface = gr.Interface(
|
81 |
+
fn=model_inference,
|
82 |
+
inputs=[image_in,model_choice, prob_threshold_slider, classes_to_show],
|
83 |
+
outputs=image_out,
|
84 |
+
title="YOLOS - Object Detection",
|
85 |
+
description=description,
|
86 |
+
).launch()
|