keremberke commited on
Commit
bb7e9b2
·
1 Parent(s): 6bd6e5f

upload space files

Browse files
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: Football Object Detection
3
- emoji: 📊
4
- colorFrom: purple
5
- colorTo: pink
6
  sdk: gradio
7
  sdk_version: 3.15.0
8
  app_file: app.py
 
1
  ---
2
  title: Football Object Detection
3
+ emoji: 🎮
4
+ colorFrom: red
5
+ colorTo: gray
6
  sdk: gradio
7
  sdk_version: 3.15.0
8
  app_file: app.py
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import json
3
+ import gradio as gr
4
+ import yolov5
5
+ from PIL import Image
6
+ from huggingface_hub import hf_hub_download
7
+
8
+ app_title = "Football Object Detection"
9
+ models_ids = ['keremberke/yolov5n-football', 'keremberke/yolov5s-football', 'keremberke/yolov5m-football']
10
+ article = f"<p style='text-align: center'> <a href='https://huggingface.co/{models_ids[-1]}'>huggingface.co/{models_ids[-1]}</a> | <a href='https://huggingface.co/keremberke/football-object-detection'>huggingface.co/keremberke/football-object-detection</a> | <a href='https://github.com/keremberke/awesome-yolov5-models'>awesome-yolov5-models</a> </p>"
11
+
12
+ current_model_id = models_ids[-1]
13
+ model = yolov5.load(current_model_id)
14
+
15
+ examples = [['test_images/18_pp_jpg.rf.912a54e24d38371daf61114b9a6b18be.jpg', 0.25, 'keremberke/yolov5m-football'], ['test_images/54881_jpg.rf.62b337bc47dbf6fbf5a34e18a361de97.jpg', 0.25, 'keremberke/yolov5m-football'], ['test_images/55219_jpg.rf.cdfe02a50951cf1ad449e940fbb646ac.jpg', 0.25, 'keremberke/yolov5m-football']]
16
+
17
+
18
+ def predict(image, threshold=0.25, model_id=None):
19
+ # update model if required
20
+ global current_model_id
21
+ global model
22
+ if model_id != current_model_id:
23
+ model = yolov5.load(model_id)
24
+ current_model_id = model_id
25
+
26
+ # get model input size
27
+ config_path = hf_hub_download(repo_id=model_id, filename="config.json")
28
+ with open(config_path, "r") as f:
29
+ config = json.load(f)
30
+ input_size = config["input_size"]
31
+
32
+ # perform inference
33
+ model.conf = threshold
34
+ results = model(image, size=input_size)
35
+ numpy_image = results.render()[0]
36
+ output_image = Image.fromarray(numpy_image)
37
+ return output_image
38
+
39
+
40
+ gr.Interface(
41
+ title=app_title,
42
+ description="Created by 'keremberke'",
43
+ article=article,
44
+ fn=predict,
45
+ inputs=[
46
+ gr.Image(type="pil"),
47
+ gr.Slider(maximum=1, step=0.01, value=0.25),
48
+ gr.Dropdown(models_ids, value=models_ids[-1]),
49
+ ],
50
+ outputs=gr.Image(type="pil"),
51
+ examples=examples,
52
+ cache_examples=True if examples else False,
53
+ ).launch(enable_queue=True)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+
2
+ yolov5==7.0.5
3
+ gradio==3.15.0
4
+ torch
5
+ huggingface-hub
test_images/18_pp_jpg.rf.912a54e24d38371daf61114b9a6b18be.jpg ADDED
test_images/54881_jpg.rf.62b337bc47dbf6fbf5a34e18a361de97.jpg ADDED
test_images/55219_jpg.rf.cdfe02a50951cf1ad449e940fbb646ac.jpg ADDED