Spaces:
Running
Running
Shak33l-UiRev
commited on
getting confused on path
Browse files
app.py
CHANGED
@@ -8,7 +8,8 @@ from transformers import (
|
|
8 |
LayoutLMv3Processor,
|
9 |
LayoutLMv3ForSequenceClassification,
|
10 |
AutoProcessor,
|
11 |
-
AutoModelForCausalLM
|
|
|
12 |
)
|
13 |
from ultralytics import YOLO
|
14 |
import io
|
@@ -27,76 +28,35 @@ logger = logging.getLogger(__name__)
|
|
27 |
|
28 |
@st.cache_resource
|
29 |
def load_model(model_name):
|
30 |
-
"""Load the selected model and processor
|
31 |
-
|
32 |
-
Args:
|
33 |
-
model_name (str): Name of the model to load ("Donut", "LayoutLMv3", or "OmniParser")
|
34 |
-
|
35 |
-
Returns:
|
36 |
-
dict: Dictionary containing model components
|
37 |
-
"""
|
38 |
try:
|
39 |
if model_name == "OmniParser":
|
40 |
try:
|
41 |
-
#
|
42 |
-
yolo_model = YOLO("microsoft/OmniParser/icon_detect") # Updated path
|
43 |
-
|
44 |
processor = AutoProcessor.from_pretrained(
|
45 |
-
"microsoft/OmniParser
|
46 |
trust_remote_code=True
|
47 |
)
|
48 |
|
49 |
-
|
50 |
-
"microsoft/OmniParser
|
51 |
trust_remote_code=True,
|
52 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
53 |
)
|
54 |
|
55 |
if torch.cuda.is_available():
|
56 |
-
|
57 |
|
58 |
-
st.success("Successfully loaded OmniParser
|
59 |
return {
|
60 |
-
'yolo': yolo_model,
|
61 |
'processor': processor,
|
62 |
-
'model':
|
63 |
}
|
64 |
|
65 |
except Exception as e:
|
66 |
st.error(f"Failed to load OmniParser from HuggingFace Hub: {str(e)}")
|
67 |
-
|
68 |
-
|
69 |
-
weights_path = "weights"
|
70 |
-
if os.path.exists(os.path.join(weights_path, "icon_detect/model.safetensors")):
|
71 |
-
st.info("Attempting to load from local weights...")
|
72 |
-
|
73 |
-
yolo_model = YOLO(os.path.join(weights_path, "icon_detect/model.safetensors"))
|
74 |
-
|
75 |
-
processor = AutoProcessor.from_pretrained(
|
76 |
-
os.path.join(weights_path, "icon_caption_florence"),
|
77 |
-
trust_remote_code=True,
|
78 |
-
local_files_only=True
|
79 |
-
)
|
80 |
-
|
81 |
-
caption_model = AutoModelForCausalLM.from_pretrained(
|
82 |
-
os.path.join(weights_path, "icon_caption_florence"),
|
83 |
-
trust_remote_code=True,
|
84 |
-
local_files_only=True,
|
85 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
86 |
-
)
|
87 |
-
|
88 |
-
if torch.cuda.is_available():
|
89 |
-
caption_model = caption_model.to("cuda")
|
90 |
-
|
91 |
-
st.success("Successfully loaded OmniParser from local weights")
|
92 |
-
return {
|
93 |
-
'yolo': yolo_model,
|
94 |
-
'processor': processor,
|
95 |
-
'model': caption_model
|
96 |
-
}
|
97 |
-
else:
|
98 |
-
st.error("Could not find local weights and HuggingFace Hub loading failed")
|
99 |
-
raise ValueError("No valid model weights found for OmniParser")
|
100 |
|
101 |
elif model_name == "Donut":
|
102 |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
|
@@ -132,61 +92,32 @@ def analyze_document(image, model_name, models_dict):
|
|
132 |
return {"error": "Model failed to load", "type": "model_error"}
|
133 |
|
134 |
if model_name == "OmniParser":
|
135 |
-
#
|
136 |
-
|
137 |
-
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
)
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
# Get region of interest
|
157 |
-
roi = image.crop((int(x1), int(y1), int(x2), int(y2)))
|
158 |
-
|
159 |
-
# Generate caption using the model
|
160 |
-
inputs = models_dict['processor'](
|
161 |
-
images=roi,
|
162 |
-
return_tensors="pt"
|
163 |
-
)
|
164 |
-
|
165 |
-
outputs = models_dict['model'].generate(
|
166 |
-
**inputs,
|
167 |
-
max_length=50,
|
168 |
-
num_beams=4,
|
169 |
-
temperature=0.7
|
170 |
-
)
|
171 |
-
|
172 |
-
caption = models_dict['processor'].decode(outputs[0], skip_special_tokens=True)
|
173 |
-
|
174 |
-
results.append({
|
175 |
-
"bbox": [float(x) for x in [x1, y1, x2, y2]],
|
176 |
-
"confidence": float(conf),
|
177 |
-
"class": int(cls),
|
178 |
-
"caption": caption
|
179 |
-
})
|
180 |
-
|
181 |
-
return {
|
182 |
-
"detected_elements": len(results),
|
183 |
-
"elements": results
|
184 |
}
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
if os.path.exists(temp_path):
|
189 |
-
os.remove(temp_path)
|
190 |
|
191 |
elif model_name == "Donut":
|
192 |
model = models_dict['model']
|
|
|
8 |
LayoutLMv3Processor,
|
9 |
LayoutLMv3ForSequenceClassification,
|
10 |
AutoProcessor,
|
11 |
+
AutoModelForCausalLM,
|
12 |
+
AutoModelForVisualQuestionAnswering
|
13 |
)
|
14 |
from ultralytics import YOLO
|
15 |
import io
|
|
|
28 |
|
29 |
@st.cache_resource
|
30 |
def load_model(model_name):
|
31 |
+
"""Load the selected model and processor"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
try:
|
33 |
if model_name == "OmniParser":
|
34 |
try:
|
35 |
+
# Load model directly using official implementation
|
|
|
|
|
36 |
processor = AutoProcessor.from_pretrained(
|
37 |
+
"microsoft/OmniParser",
|
38 |
trust_remote_code=True
|
39 |
)
|
40 |
|
41 |
+
model = AutoModelForVisualQuestionAnswering.from_pretrained(
|
42 |
+
"microsoft/OmniParser",
|
43 |
trust_remote_code=True,
|
44 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
45 |
)
|
46 |
|
47 |
if torch.cuda.is_available():
|
48 |
+
model = model.to("cuda")
|
49 |
|
50 |
+
st.success("Successfully loaded OmniParser model")
|
51 |
return {
|
|
|
52 |
'processor': processor,
|
53 |
+
'model': model
|
54 |
}
|
55 |
|
56 |
except Exception as e:
|
57 |
st.error(f"Failed to load OmniParser from HuggingFace Hub: {str(e)}")
|
58 |
+
logger.error(f"OmniParser loading error: {str(e)}", exc_info=True)
|
59 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
elif model_name == "Donut":
|
62 |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
|
|
|
92 |
return {"error": "Model failed to load", "type": "model_error"}
|
93 |
|
94 |
if model_name == "OmniParser":
|
95 |
+
# Process image with OmniParser
|
96 |
+
inputs = models_dict['processor'](
|
97 |
+
images=image,
|
98 |
+
return_tensors="pt",
|
99 |
+
)
|
100 |
|
101 |
+
if torch.cuda.is_available():
|
102 |
+
inputs = {k: v.to("cuda") if hasattr(v, "to") else v
|
103 |
+
for k, v in inputs.items()}
|
104 |
|
105 |
+
# Generate outputs
|
106 |
+
outputs = models_dict['model'](**inputs)
|
107 |
+
|
108 |
+
# Process results
|
109 |
+
# The exact processing will depend on the model's output format
|
110 |
+
results = {
|
111 |
+
"predictions": outputs.logits.softmax(-1).tolist(),
|
112 |
+
"detected_elements": len(outputs.logits[0]),
|
113 |
+
"model_output": {
|
114 |
+
k: v.tolist() if hasattr(v, "tolist") else str(v)
|
115 |
+
for k, v in outputs.items()
|
116 |
+
if k != "last_hidden_state" # Skip large tensors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
}
|
118 |
+
}
|
119 |
+
|
120 |
+
return results
|
|
|
|
|
121 |
|
122 |
elif model_name == "Donut":
|
123 |
model = models_dict['model']
|