|
import streamlit as st |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
from transformers import ViTFeatureExtractor, ViTForImageClassification |
|
from sentence_transformers import SentenceTransformer |
|
import matplotlib.pyplot as plt |
|
import logging |
|
import faiss |
|
from typing import List, Dict |
|
from datetime import datetime |
|
from groq import Groq |
|
import os |
|
from functools import lru_cache |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
class RAGSystem: |
|
def __init__(self): |
|
|
|
self._embedding_model = None |
|
self._vector_store = None |
|
self._knowledge_base = None |
|
|
|
@property |
|
def embedding_model(self): |
|
if self._embedding_model is None: |
|
self._embedding_model = SentenceTransformer('all-MiniLM-L6-v2') |
|
return self._embedding_model |
|
|
|
@property |
|
def knowledge_base(self): |
|
if self._knowledge_base is None: |
|
self._knowledge_base = self.load_knowledge_base() |
|
return self._knowledge_base |
|
|
|
@property |
|
def vector_store(self): |
|
if self._vector_store is None: |
|
self._vector_store = self.create_vector_store() |
|
return self._vector_store |
|
|
|
@staticmethod |
|
@lru_cache(maxsize=1) |
|
def load_knowledge_base() -> List[Dict]: |
|
"""Load and preprocess knowledge base""" |
|
kb = { |
|
"spalling": [ |
|
{ |
|
"severity": "Critical", |
|
"description": "Severe concrete spalling with exposed reinforcement", |
|
"repair_method": "Remove deteriorated concrete, clean reinforcement", |
|
"immediate_action": "Evacuate area, install support", |
|
"prevention": "Regular inspections, waterproofing" |
|
} |
|
], |
|
"structural_cracks": [ |
|
{ |
|
"severity": "High", |
|
"description": "Active structural cracks >5mm width", |
|
"repair_method": "Structural analysis, epoxy injection", |
|
"immediate_action": "Install crack monitors", |
|
"prevention": "Regular monitoring, load management" |
|
} |
|
], |
|
"surface_deterioration": [ |
|
{ |
|
"severity": "Medium", |
|
"description": "Surface scaling and deterioration", |
|
"repair_method": "Surface preparation, patch repair", |
|
"immediate_action": "Document extent, plan repairs", |
|
"prevention": "Surface sealers, proper drainage" |
|
} |
|
], |
|
"corrosion": [ |
|
{ |
|
"severity": "High", |
|
"description": "Corrosion of reinforcement leading to cracks", |
|
"repair_method": "Remove rust, apply inhibitors", |
|
"immediate_action": "Isolate affected area", |
|
"prevention": "Anti-corrosion coatings, proper drainage" |
|
} |
|
], |
|
"efflorescence": [ |
|
{ |
|
"severity": "Low", |
|
"description": "White powder deposits on concrete surfaces", |
|
"repair_method": "Surface cleaning, sealant application", |
|
"immediate_action": "Identify moisture source", |
|
"prevention": "Improve waterproofing, reduce moisture ingress" |
|
} |
|
], |
|
"delamination": [ |
|
{ |
|
"severity": "Medium", |
|
"description": "Separation of layers in concrete", |
|
"repair_method": "Resurface or replace delaminated sections", |
|
"immediate_action": "Inspect bonding layers", |
|
"prevention": "Proper curing and bonding agents" |
|
} |
|
], |
|
"honeycombing": [ |
|
{ |
|
"severity": "Medium", |
|
"description": "Voids in concrete caused by improper compaction", |
|
"repair_method": "Grout injection, patch repair", |
|
"immediate_action": "Assess structural impact", |
|
"prevention": "Proper vibration during pouring" |
|
} |
|
], |
|
"water_leakage": [ |
|
{ |
|
"severity": "High", |
|
"description": "Water ingress through cracks or joints", |
|
"repair_method": "Injection grouting, waterproofing membranes", |
|
"immediate_action": "Stop water flow, apply sealants", |
|
"prevention": "Drainage systems, joint sealing" |
|
} |
|
], |
|
"settlement_cracks": [ |
|
{ |
|
"severity": "High", |
|
"description": "Cracks due to uneven foundation settlement", |
|
"repair_method": "Foundation underpinning, grouting", |
|
"immediate_action": "Monitor movement, stabilize foundation", |
|
"prevention": "Soil compaction, proper foundation design" |
|
} |
|
], |
|
"shrinkage_cracks": [ |
|
{ |
|
"severity": "Low", |
|
"description": "Minor cracks caused by shrinkage during curing", |
|
"repair_method": "Sealant application, surface repairs", |
|
"immediate_action": "Monitor cracks", |
|
"prevention": "Proper curing and moisture control" |
|
} |
|
] |
|
} |
|
|
|
documents = [] |
|
for category, items in kb.items(): |
|
for item in items: |
|
doc_text = f"Category: {category}\n" |
|
for key, value in item.items(): |
|
doc_text += f"{key}: {value}\n" |
|
documents.append({"text": doc_text, "metadata": {"category": category}}) |
|
|
|
return documents |
|
|
|
def create_vector_store(self): |
|
"""Create FAISS vector store""" |
|
texts = [doc["text"] for doc in self.knowledge_base] |
|
embeddings = self.embedding_model.encode(texts) |
|
dimension = embeddings.shape[1] |
|
index = faiss.IndexFlatL2(dimension) |
|
index.add(np.array(embeddings).astype('float32')) |
|
return index |
|
|
|
@lru_cache(maxsize=32) |
|
def get_relevant_context(self, query: str, k: int = 2) -> str: |
|
"""Retrieve relevant context based on query""" |
|
try: |
|
query_embedding = self.embedding_model.encode([query]) |
|
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k) |
|
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]]) |
|
return context |
|
except Exception as e: |
|
logger.error(f"Error retrieving context: {e}") |
|
return "" |
|
|
|
class ImageAnalyzer: |
|
def __init__(self, model_name="microsoft/swin-base-patch4-window7-224-in22k"): |
|
self.device = "cpu" |
|
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"] |
|
self.model_name = model_name |
|
self._model = None |
|
self._feature_extractor = None |
|
|
|
@property |
|
def model(self): |
|
if self._model is None: |
|
self._model = self._load_model() |
|
return self._model |
|
|
|
@property |
|
def feature_extractor(self): |
|
if self._feature_extractor is None: |
|
self._feature_extractor = self._load_feature_extractor() |
|
return self._feature_extractor |
|
|
|
def _load_feature_extractor(self): |
|
"""Load the appropriate feature extractor based on model type""" |
|
try: |
|
if "swin" in self.model_name: |
|
from transformers import AutoFeatureExtractor |
|
return AutoFeatureExtractor.from_pretrained(self.model_name) |
|
elif "convnext" in self.model_name: |
|
from transformers import ConvNextFeatureExtractor |
|
return ConvNextFeatureExtractor.from_pretrained(self.model_name) |
|
else: |
|
from transformers import ViTFeatureExtractor |
|
return ViTFeatureExtractor.from_pretrained(self.model_name) |
|
except Exception as e: |
|
logger.error(f"Feature extractor initialization error: {e}") |
|
return None |
|
|
|
def _load_model(self): |
|
try: |
|
if "swin" in self.model_name: |
|
from transformers import SwinForImageClassification |
|
model = SwinForImageClassification.from_pretrained( |
|
self.model_name, |
|
num_labels=len(self.defect_classes), |
|
ignore_mismatched_sizes=True |
|
) |
|
elif "convnext" in self.model_name: |
|
from transformers import ConvNextForImageClassification |
|
model = ConvNextForImageClassification.from_pretrained( |
|
self.model_name, |
|
num_labels=len(self.defect_classes), |
|
ignore_mismatched_sizes=True |
|
) |
|
else: |
|
from transformers import ViTForImageClassification |
|
model = ViTForImageClassification.from_pretrained( |
|
self.model_name, |
|
num_labels=len(self.defect_classes), |
|
ignore_mismatched_sizes=True |
|
) |
|
|
|
model = model.to(self.device) |
|
|
|
|
|
with torch.no_grad(): |
|
if hasattr(model, 'classifier'): |
|
in_features = model.classifier.in_features |
|
model.classifier = torch.nn.Linear(in_features, len(self.defect_classes)) |
|
elif hasattr(model, 'head'): |
|
in_features = model.head.in_features |
|
model.head = torch.nn.Linear(in_features, len(self.defect_classes)) |
|
|
|
return model |
|
except Exception as e: |
|
logger.error(f"Model initialization error: {e}") |
|
return None |
|
|
|
def preprocess_image(self, image_bytes): |
|
"""Preprocess image for model input""" |
|
return _cached_preprocess_image(image_bytes, self.model_name) |
|
|
|
def analyze_image(self, image): |
|
"""Analyze image for defects""" |
|
try: |
|
if self.model is None: |
|
raise ValueError("Model not properly initialized") |
|
|
|
inputs = self.feature_extractor( |
|
images=image, |
|
return_tensors="pt" |
|
) |
|
inputs = {k: v.to(self.device) for k, v in inputs.items()} |
|
|
|
with torch.no_grad(): |
|
outputs = self.model(**inputs) |
|
|
|
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0] |
|
|
|
confidence_threshold = 0.3 |
|
results = { |
|
self.defect_classes[i]: float(probs[i]) |
|
for i in range(len(self.defect_classes)) |
|
if float(probs[i]) > confidence_threshold |
|
} |
|
|
|
if not results: |
|
max_idx = torch.argmax(probs) |
|
results = {self.defect_classes[int(max_idx)]: float(probs[max_idx])} |
|
|
|
return results |
|
|
|
except Exception as e: |
|
logger.error(f"Analysis error: {str(e)}") |
|
return None |
|
|
|
@st.cache_data |
|
def _cached_preprocess_image(image_bytes, model_name): |
|
"""Cached version of image preprocessing""" |
|
try: |
|
image = Image.open(image_bytes) |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
|
|
|
|
if "convnext" in model_name: |
|
width, height = 384, 384 |
|
else: |
|
width, height = 224, 224 |
|
|
|
image = image.resize((width, height), Image.Resampling.LANCZOS) |
|
return image |
|
except Exception as e: |
|
logger.error(f"Image preprocessing error: {e}") |
|
return None |
|
|
|
@st.cache_data |
|
def get_groq_response(query: str, context: str) -> str: |
|
"""Get response from Groq LLM with caching""" |
|
try: |
|
if not os.getenv("GROQ_API_KEY"): |
|
return "Error: Groq API key not configured" |
|
|
|
client = Groq(api_key=os.getenv("GROQ_API_KEY")) |
|
|
|
prompt = f"""Based on the following context about construction defects, answer the question. |
|
Context: {context} |
|
Question: {query} |
|
Provide a detailed answer based on the given context.""" |
|
|
|
response = client.chat.completions.create( |
|
messages=[ |
|
{ |
|
"role": "system", |
|
"content": "You are a construction defect analysis expert." |
|
}, |
|
{ |
|
"role": "user", |
|
"content": prompt |
|
} |
|
], |
|
model="llama-3.3-70b-versatile", |
|
temperature=0.7, |
|
) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
logger.error(f"Groq API error: {e}", exc_info=True) |
|
return f"Error: Unable to get response from AI model. Exception: {str(e)}" |
|
|
|
def main(): |
|
st.set_page_config( |
|
page_title="Smart Construction Defect Analyzer", |
|
page_icon="🏗️", |
|
layout="wide" |
|
) |
|
|
|
st.title("🏗️ Smart Construction Defect Analyzer") |
|
|
|
|
|
if 'analyzer' not in st.session_state: |
|
st.session_state.analyzer = ImageAnalyzer() |
|
if 'rag_system' not in st.session_state: |
|
st.session_state.rag_system = RAGSystem() |
|
|
|
col1, col2 = st.columns([1, 1]) |
|
|
|
with col1: |
|
st.subheader("Image Analysis") |
|
uploaded_file = st.file_uploader( |
|
"Upload a construction image for analysis", |
|
type=["jpg", "jpeg", "png"], |
|
key="image_uploader" |
|
) |
|
|
|
if uploaded_file is not None: |
|
try: |
|
|
|
image_placeholder = st.empty() |
|
|
|
|
|
with st.spinner('Processing image...'): |
|
processed_image = st.session_state.analyzer.preprocess_image(uploaded_file) |
|
if processed_image: |
|
image_placeholder.image(processed_image, caption='Uploaded Image', use_container_width=True) |
|
|
|
|
|
progress_bar = st.progress(0) |
|
with st.spinner('Analyzing defects...'): |
|
results = st.session_state.analyzer.analyze_image(processed_image) |
|
progress_bar.progress(100) |
|
|
|
if results: |
|
st.success('Analysis complete!') |
|
|
|
|
|
st.subheader("Detected Defects") |
|
fig, ax = plt.subplots(figsize=(8, 4)) |
|
defects = list(results.keys()) |
|
probs = list(results.values()) |
|
ax.barh(defects, probs) |
|
ax.set_xlim(0, 1) |
|
plt.tight_layout() |
|
st.pyplot(fig) |
|
|
|
most_likely_defect = max(results.items(), key=lambda x: x[1])[0] |
|
st.info(f"Most likely defect: {most_likely_defect}") |
|
else: |
|
st.warning("No defects detected or analysis failed. Please try another image.") |
|
else: |
|
st.error("Failed to process image. Please try another one.") |
|
|
|
except Exception as e: |
|
st.error(f"Error processing image: {str(e)}") |
|
logger.error(f"Process error: {e}") |
|
|
|
with col2: |
|
st.subheader("Ask About Defects") |
|
user_query = st.text_input( |
|
"Ask a question about the defects or repairs:", |
|
help="Example: What are the repair methods for spalling?" |
|
) |
|
|
|
if user_query: |
|
with st.spinner('Getting answer...'): |
|
|
|
context = st.session_state.rag_system.get_relevant_context(user_query) |
|
|
|
if context: |
|
|
|
response = get_groq_response(user_query, context) |
|
|
|
if not response.startswith("Error"): |
|
st.write("Answer:") |
|
st.markdown(response) |
|
else: |
|
st.error(response) |
|
|
|
with st.expander("View retrieved information"): |
|
st.text(context) |
|
else: |
|
st.error("Could not find relevant information. Please try rephrasing your question.") |
|
|
|
with st.sidebar: |
|
st.header("About") |
|
st.write(""" |
|
This tool helps analyze construction defects in images and provides |
|
information about repair methods and best practices. |
|
|
|
Features: |
|
- Image analysis for defect detection |
|
- Information lookup for repair methods |
|
- Expert AI responses to your questions |
|
""") |
|
|
|
|
|
if os.getenv("GROQ_API_KEY"): |
|
st.success("Groq API: Connected") |
|
else: |
|
st.error("Groq API: Not configured") |
|
|
|
|
|
st.subheader("Settings") |
|
if st.button("Clear Cache"): |
|
st.cache_data.clear() |
|
st.success("Cache cleared!") |
|
|
|
if __name__ == "__main__": |
|
main() |