Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,11 @@
|
|
1 |
-
import time
|
2 |
from streamlit_extras.colored_header import colored_header
|
3 |
from streamlit_extras.add_vertical_space import add_vertical_space
|
4 |
-
from streamlit_card import card
|
5 |
-
import plotly.graph_objects as go
|
6 |
-
import streamlit as st
|
7 |
-
import torch
|
8 |
from PIL import Image
|
9 |
import numpy as np
|
10 |
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
11 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
12 |
import matplotlib.pyplot as plt
|
13 |
import logging
|
14 |
import faiss
|
@@ -17,6 +14,9 @@ from datetime import datetime
|
|
17 |
from groq import Groq
|
18 |
import os
|
19 |
from functools import lru_cache
|
|
|
|
|
|
|
20 |
|
21 |
# Setup logging
|
22 |
logging.basicConfig(level=logging.INFO)
|
@@ -343,8 +343,23 @@ def get_groq_response(query: str, context: str) -> str:
|
|
343 |
return f"Error: Unable to get response from AI model. Exception: {str(e)}"
|
344 |
|
345 |
|
346 |
-
def create_plotly_confidence_chart(results):
|
347 |
-
"""Create an interactive confidence chart using Plotly"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
fig = go.Figure(data=[
|
349 |
go.Bar(
|
350 |
x=list(results.values()),
|
@@ -360,28 +375,39 @@ def create_plotly_confidence_chart(results):
|
|
360 |
title='Defect Detection Confidence Levels',
|
361 |
xaxis_title='Confidence',
|
362 |
yaxis_title='Defect Type',
|
363 |
-
template='plotly_white',
|
364 |
height=400,
|
365 |
margin=dict(l=20, r=20, t=40, b=20),
|
366 |
-
xaxis=dict(range=[0, 1])
|
|
|
|
|
|
|
367 |
)
|
|
|
368 |
return fig
|
369 |
|
370 |
def create_defect_card(title, description, severity, repair_method):
|
371 |
-
"""Create a styled card for defect information"""
|
372 |
severity_colors = {
|
373 |
-
"Critical": "
|
374 |
-
"High": "
|
375 |
-
"Medium": "
|
376 |
-
"Low": "
|
377 |
}
|
378 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
return f"""
|
380 |
-
<div style="border: 1px solid
|
381 |
-
<h3 style="color: #1f77b4; margin: 0 0 10px 0;">{title}</h3>
|
382 |
<p><strong>Description:</strong> {description}</p>
|
383 |
<p><strong>Severity:</strong>
|
384 |
-
<span style="color: {severity_colors.get(severity, '
|
385 |
{severity}
|
386 |
</span>
|
387 |
</p>
|
@@ -389,6 +415,47 @@ def create_defect_card(title, description, severity, repair_method):
|
|
389 |
</div>
|
390 |
"""
|
391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
def main():
|
393 |
st.set_page_config(
|
394 |
page_title="Smart Construction Defect Analyzer",
|
@@ -397,12 +464,12 @@ def main():
|
|
397 |
initial_sidebar_state="expanded"
|
398 |
)
|
399 |
|
400 |
-
#
|
|
|
|
|
|
|
401 |
st.markdown("""
|
402 |
<style>
|
403 |
-
.stApp {
|
404 |
-
background-color: #f8f9fa;
|
405 |
-
}
|
406 |
.css-1d391kg {
|
407 |
padding: 2rem 1rem;
|
408 |
}
|
@@ -412,12 +479,9 @@ def main():
|
|
412 |
.upload-text {
|
413 |
text-align: center;
|
414 |
padding: 2rem;
|
415 |
-
border: 2px dashed #ccc;
|
416 |
border-radius: 10px;
|
417 |
-
background-color: #ffffff;
|
418 |
}
|
419 |
.info-box {
|
420 |
-
background-color: #e9ecef;
|
421 |
padding: 1rem;
|
422 |
border-radius: 10px;
|
423 |
margin: 1rem 0;
|
@@ -441,6 +505,13 @@ def main():
|
|
441 |
color_name="blue-70"
|
442 |
)
|
443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
if os.getenv("GROQ_API_KEY"):
|
445 |
st.success("🟢 AI System: Connected")
|
446 |
else:
|
@@ -516,9 +587,9 @@ def main():
|
|
516 |
if uploaded_file and results:
|
517 |
st.markdown("### Analysis Results")
|
518 |
|
519 |
-
# Interactive confidence chart
|
520 |
-
fig = create_plotly_confidence_chart(results)
|
521 |
-
st.plotly_chart(fig, use_container_width=True)
|
522 |
|
523 |
# Most critical defect
|
524 |
most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
|
@@ -564,10 +635,29 @@ def main():
|
|
564 |
with col1:
|
565 |
st.image(analysis['image'], caption='Analyzed Image', use_column_width=True)
|
566 |
with col2:
|
567 |
-
|
568 |
-
|
|
|
569 |
else:
|
570 |
st.info("No analysis history available")
|
571 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
if __name__ == "__main__":
|
573 |
main()
|
|
|
|
|
1 |
from streamlit_extras.colored_header import colored_header
|
2 |
from streamlit_extras.add_vertical_space import add_vertical_space
|
|
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
import streamlit as st
|
8 |
+
import torch
|
9 |
import matplotlib.pyplot as plt
|
10 |
import logging
|
11 |
import faiss
|
|
|
14 |
from groq import Groq
|
15 |
import os
|
16 |
from functools import lru_cache
|
17 |
+
import time
|
18 |
+
from streamlit_card import card
|
19 |
+
import plotly.graph_objects as go
|
20 |
|
21 |
# Setup logging
|
22 |
logging.basicConfig(level=logging.INFO)
|
|
|
343 |
return f"Error: Unable to get response from AI model. Exception: {str(e)}"
|
344 |
|
345 |
|
346 |
+
def create_plotly_confidence_chart(results, chart_id):
|
347 |
+
"""Create an interactive confidence chart using Plotly with unique ID"""
|
348 |
+
colors = {
|
349 |
+
'light': {
|
350 |
+
'bg': 'white',
|
351 |
+
'text': 'black',
|
352 |
+
'grid': '#eee'
|
353 |
+
},
|
354 |
+
'dark': {
|
355 |
+
'bg': '#262730',
|
356 |
+
'text': 'white',
|
357 |
+
'grid': '#333'
|
358 |
+
}
|
359 |
+
}
|
360 |
+
|
361 |
+
theme = 'dark' if st.get_option('theme.base') == 'dark' else 'light'
|
362 |
+
|
363 |
fig = go.Figure(data=[
|
364 |
go.Bar(
|
365 |
x=list(results.values()),
|
|
|
375 |
title='Defect Detection Confidence Levels',
|
376 |
xaxis_title='Confidence',
|
377 |
yaxis_title='Defect Type',
|
378 |
+
template='plotly_dark' if theme == 'dark' else 'plotly_white',
|
379 |
height=400,
|
380 |
margin=dict(l=20, r=20, t=40, b=20),
|
381 |
+
xaxis=dict(range=[0, 1]),
|
382 |
+
plot_bgcolor=colors[theme]['bg'],
|
383 |
+
paper_bgcolor=colors[theme]['bg'],
|
384 |
+
font=dict(color=colors[theme]['text'])
|
385 |
)
|
386 |
+
|
387 |
return fig
|
388 |
|
389 |
def create_defect_card(title, description, severity, repair_method):
|
390 |
+
"""Create a styled card for defect information with theme support"""
|
391 |
severity_colors = {
|
392 |
+
"Critical": "#ff4444",
|
393 |
+
"High": "#ffa000",
|
394 |
+
"Medium": "#ffeb3b",
|
395 |
+
"Low": "#4caf50"
|
396 |
}
|
397 |
|
398 |
+
# Get current theme
|
399 |
+
is_dark = st.get_option('theme.base') == 'dark'
|
400 |
+
|
401 |
+
bg_color = '#1e1e1e' if is_dark else '#ffffff'
|
402 |
+
text_color = '#ffffff' if is_dark else '#000000'
|
403 |
+
border_color = '#333333' if is_dark else '#dddddd'
|
404 |
+
|
405 |
return f"""
|
406 |
+
<div style="border: 1px solid {border_color}; border-radius: 10px; padding: 15px; margin: 10px 0; background-color: {bg_color}; color: {text_color};">
|
407 |
+
<h3 style="color: {'#00a0dc' if is_dark else '#1f77b4'}; margin: 0 0 10px 0;">{title}</h3>
|
408 |
<p><strong>Description:</strong> {description}</p>
|
409 |
<p><strong>Severity:</strong>
|
410 |
+
<span style="color: {severity_colors.get(severity, '#808080')}">
|
411 |
{severity}
|
412 |
</span>
|
413 |
</p>
|
|
|
415 |
</div>
|
416 |
"""
|
417 |
|
418 |
+
def get_theme_specific_styles():
|
419 |
+
"""Get theme-specific CSS styles"""
|
420 |
+
is_dark = st.get_option('theme.base') == 'dark'
|
421 |
+
|
422 |
+
if is_dark:
|
423 |
+
return """
|
424 |
+
<style>
|
425 |
+
.stApp {
|
426 |
+
background-color: #0e1117;
|
427 |
+
}
|
428 |
+
.upload-text {
|
429 |
+
border: 2px dashed #444;
|
430 |
+
background-color: #1e1e1e;
|
431 |
+
}
|
432 |
+
.info-box {
|
433 |
+
background-color: #262730;
|
434 |
+
border: 1px solid #333;
|
435 |
+
}
|
436 |
+
.stAlert {
|
437 |
+
background-color: #262730;
|
438 |
+
border: 1px solid #333;
|
439 |
+
}
|
440 |
+
</style>
|
441 |
+
"""
|
442 |
+
else:
|
443 |
+
return """
|
444 |
+
<style>
|
445 |
+
.stApp {
|
446 |
+
background-color: #f8f9fa;
|
447 |
+
}
|
448 |
+
.upload-text {
|
449 |
+
border: 2px dashed #ccc;
|
450 |
+
background-color: #ffffff;
|
451 |
+
}
|
452 |
+
.info-box {
|
453 |
+
background-color: #e9ecef;
|
454 |
+
border: 1px solid #dee2e6;
|
455 |
+
}
|
456 |
+
</style>
|
457 |
+
"""
|
458 |
+
|
459 |
def main():
|
460 |
st.set_page_config(
|
461 |
page_title="Smart Construction Defect Analyzer",
|
|
|
464 |
initial_sidebar_state="expanded"
|
465 |
)
|
466 |
|
467 |
+
# Apply theme-specific styles
|
468 |
+
st.markdown(get_theme_specific_styles(), unsafe_allow_html=True)
|
469 |
+
|
470 |
+
# Base CSS that works for both themes
|
471 |
st.markdown("""
|
472 |
<style>
|
|
|
|
|
|
|
473 |
.css-1d391kg {
|
474 |
padding: 2rem 1rem;
|
475 |
}
|
|
|
479 |
.upload-text {
|
480 |
text-align: center;
|
481 |
padding: 2rem;
|
|
|
482 |
border-radius: 10px;
|
|
|
483 |
}
|
484 |
.info-box {
|
|
|
485 |
padding: 1rem;
|
486 |
border-radius: 10px;
|
487 |
margin: 1rem 0;
|
|
|
505 |
color_name="blue-70"
|
506 |
)
|
507 |
|
508 |
+
# Theme selector
|
509 |
+
theme = st.selectbox(
|
510 |
+
"Choose Theme",
|
511 |
+
options=["Light", "Dark"],
|
512 |
+
index=1 if st.get_option('theme.base') == 'dark' else 0
|
513 |
+
)
|
514 |
+
|
515 |
if os.getenv("GROQ_API_KEY"):
|
516 |
st.success("🟢 AI System: Connected")
|
517 |
else:
|
|
|
587 |
if uploaded_file and results:
|
588 |
st.markdown("### Analysis Results")
|
589 |
|
590 |
+
# Interactive confidence chart with unique ID
|
591 |
+
fig = create_plotly_confidence_chart(results, "main_analysis")
|
592 |
+
st.plotly_chart(fig, use_container_width=True, key="main_chart")
|
593 |
|
594 |
# Most critical defect
|
595 |
most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
|
|
|
635 |
with col1:
|
636 |
st.image(analysis['image'], caption='Analyzed Image', use_column_width=True)
|
637 |
with col2:
|
638 |
+
# Create chart with unique ID for history items
|
639 |
+
fig = create_plotly_confidence_chart(analysis['results'], f"history_{i}")
|
640 |
+
st.plotly_chart(fig, use_container_width=True, key=f"history_chart_{i}")
|
641 |
else:
|
642 |
st.info("No analysis history available")
|
643 |
|
644 |
+
# Handle theme change
|
645 |
+
if theme == "Dark" and st.get_option('theme.base') != 'dark':
|
646 |
+
st.markdown("""
|
647 |
+
<script>
|
648 |
+
var elements = window.parent.document.getElementsByTagName('iframe');
|
649 |
+
for (var i = 0; i < elements.length; i++) {
|
650 |
+
if (elements[i].height === '0') {
|
651 |
+
elements[i].remove();
|
652 |
+
}
|
653 |
+
}
|
654 |
+
</script>
|
655 |
+
""", unsafe_allow_html=True)
|
656 |
+
st.experimental_set_query_params(theme='dark')
|
657 |
+
st.experimental_rerun()
|
658 |
+
elif theme == "Light" and st.get_option('theme.base') != 'light':
|
659 |
+
st.experimental_set_query_params(theme='light')
|
660 |
+
st.experimental_rerun()
|
661 |
+
|
662 |
if __name__ == "__main__":
|
663 |
main()
|