Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,573 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
from
|
|
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
def
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from streamlit_extras.colored_header import colored_header
|
3 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
4 |
+
from streamlit_card import card
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
import streamlit as st
|
7 |
import torch
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import logging
|
14 |
+
import faiss
|
15 |
+
from typing import List, Dict
|
16 |
+
from datetime import datetime
|
17 |
+
from groq import Groq
|
18 |
+
import os
|
19 |
+
from functools import lru_cache
|
20 |
+
|
21 |
+
# Setup logging
|
22 |
+
logging.basicConfig(level=logging.INFO)
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
class RAGSystem:
|
26 |
+
def __init__(self):
|
27 |
+
# Load models only when needed
|
28 |
+
self._embedding_model = None
|
29 |
+
self._vector_store = None
|
30 |
+
self._knowledge_base = None
|
31 |
+
|
32 |
+
@property
|
33 |
+
def embedding_model(self):
|
34 |
+
if self._embedding_model is None:
|
35 |
+
self._embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
36 |
+
return self._embedding_model
|
37 |
+
|
38 |
+
@property
|
39 |
+
def knowledge_base(self):
|
40 |
+
if self._knowledge_base is None:
|
41 |
+
self._knowledge_base = self.load_knowledge_base()
|
42 |
+
return self._knowledge_base
|
43 |
+
|
44 |
+
@property
|
45 |
+
def vector_store(self):
|
46 |
+
if self._vector_store is None:
|
47 |
+
self._vector_store = self.create_vector_store()
|
48 |
+
return self._vector_store
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
@lru_cache(maxsize=1) # Cache the knowledge base
|
52 |
+
def load_knowledge_base() -> List[Dict]:
|
53 |
+
"""Load and preprocess knowledge base"""
|
54 |
+
kb = {
|
55 |
+
"spalling": [
|
56 |
+
{
|
57 |
+
"severity": "Critical",
|
58 |
+
"description": "Severe concrete spalling with exposed reinforcement",
|
59 |
+
"repair_method": "Remove deteriorated concrete, clean reinforcement",
|
60 |
+
"immediate_action": "Evacuate area, install support",
|
61 |
+
"prevention": "Regular inspections, waterproofing"
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"structural_cracks": [
|
65 |
+
{
|
66 |
+
"severity": "High",
|
67 |
+
"description": "Active structural cracks >5mm width",
|
68 |
+
"repair_method": "Structural analysis, epoxy injection",
|
69 |
+
"immediate_action": "Install crack monitors",
|
70 |
+
"prevention": "Regular monitoring, load management"
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"surface_deterioration": [
|
74 |
+
{
|
75 |
+
"severity": "Medium",
|
76 |
+
"description": "Surface scaling and deterioration",
|
77 |
+
"repair_method": "Surface preparation, patch repair",
|
78 |
+
"immediate_action": "Document extent, plan repairs",
|
79 |
+
"prevention": "Surface sealers, proper drainage"
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"corrosion": [
|
83 |
+
{
|
84 |
+
"severity": "High",
|
85 |
+
"description": "Corrosion of reinforcement leading to cracks",
|
86 |
+
"repair_method": "Remove rust, apply inhibitors",
|
87 |
+
"immediate_action": "Isolate affected area",
|
88 |
+
"prevention": "Anti-corrosion coatings, proper drainage"
|
89 |
+
}
|
90 |
+
],
|
91 |
+
"efflorescence": [
|
92 |
+
{
|
93 |
+
"severity": "Low",
|
94 |
+
"description": "White powder deposits on concrete surfaces",
|
95 |
+
"repair_method": "Surface cleaning, sealant application",
|
96 |
+
"immediate_action": "Identify moisture source",
|
97 |
+
"prevention": "Improve waterproofing, reduce moisture ingress"
|
98 |
+
}
|
99 |
+
],
|
100 |
+
"delamination": [
|
101 |
+
{
|
102 |
+
"severity": "Medium",
|
103 |
+
"description": "Separation of layers in concrete",
|
104 |
+
"repair_method": "Resurface or replace delaminated sections",
|
105 |
+
"immediate_action": "Inspect bonding layers",
|
106 |
+
"prevention": "Proper curing and bonding agents"
|
107 |
+
}
|
108 |
+
],
|
109 |
+
"honeycombing": [
|
110 |
+
{
|
111 |
+
"severity": "Medium",
|
112 |
+
"description": "Voids in concrete caused by improper compaction",
|
113 |
+
"repair_method": "Grout injection, patch repair",
|
114 |
+
"immediate_action": "Assess structural impact",
|
115 |
+
"prevention": "Proper vibration during pouring"
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"water_leakage": [
|
119 |
+
{
|
120 |
+
"severity": "High",
|
121 |
+
"description": "Water ingress through cracks or joints",
|
122 |
+
"repair_method": "Injection grouting, waterproofing membranes",
|
123 |
+
"immediate_action": "Stop water flow, apply sealants",
|
124 |
+
"prevention": "Drainage systems, joint sealing"
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"settlement_cracks": [
|
128 |
+
{
|
129 |
+
"severity": "High",
|
130 |
+
"description": "Cracks due to uneven foundation settlement",
|
131 |
+
"repair_method": "Foundation underpinning, grouting",
|
132 |
+
"immediate_action": "Monitor movement, stabilize foundation",
|
133 |
+
"prevention": "Soil compaction, proper foundation design"
|
134 |
+
}
|
135 |
+
],
|
136 |
+
"shrinkage_cracks": [
|
137 |
+
{
|
138 |
+
"severity": "Low",
|
139 |
+
"description": "Minor cracks caused by shrinkage during curing",
|
140 |
+
"repair_method": "Sealant application, surface repairs",
|
141 |
+
"immediate_action": "Monitor cracks",
|
142 |
+
"prevention": "Proper curing and moisture control"
|
143 |
+
}
|
144 |
+
]
|
145 |
+
}
|
146 |
+
|
147 |
+
documents = []
|
148 |
+
for category, items in kb.items():
|
149 |
+
for item in items:
|
150 |
+
doc_text = f"Category: {category}\n"
|
151 |
+
for key, value in item.items():
|
152 |
+
doc_text += f"{key}: {value}\n"
|
153 |
+
documents.append({"text": doc_text, "metadata": {"category": category}})
|
154 |
+
|
155 |
+
return documents
|
156 |
+
|
157 |
+
def create_vector_store(self):
|
158 |
+
"""Create FAISS vector store"""
|
159 |
+
texts = [doc["text"] for doc in self.knowledge_base]
|
160 |
+
embeddings = self.embedding_model.encode(texts)
|
161 |
+
dimension = embeddings.shape[1]
|
162 |
+
index = faiss.IndexFlatL2(dimension)
|
163 |
+
index.add(np.array(embeddings).astype('float32'))
|
164 |
+
return index
|
165 |
+
|
166 |
+
@lru_cache(maxsize=32) # Cache recent query results
|
167 |
+
def get_relevant_context(self, query: str, k: int = 2) -> str:
|
168 |
+
"""Retrieve relevant context based on query"""
|
169 |
+
try:
|
170 |
+
query_embedding = self.embedding_model.encode([query])
|
171 |
+
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
|
172 |
+
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
|
173 |
+
return context
|
174 |
+
except Exception as e:
|
175 |
+
logger.error(f"Error retrieving context: {e}")
|
176 |
+
return ""
|
177 |
+
|
178 |
+
class ImageAnalyzer:
|
179 |
+
def __init__(self, model_name="microsoft/swin-base-patch4-window7-224-in22k"):
|
180 |
+
self.device = "cpu"
|
181 |
+
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
|
182 |
+
self.model_name = model_name
|
183 |
+
self._model = None
|
184 |
+
self._feature_extractor = None
|
185 |
+
|
186 |
+
@property
|
187 |
+
def model(self):
|
188 |
+
if self._model is None:
|
189 |
+
self._model = self._load_model()
|
190 |
+
return self._model
|
191 |
+
|
192 |
+
@property
|
193 |
+
def feature_extractor(self):
|
194 |
+
if self._feature_extractor is None:
|
195 |
+
self._feature_extractor = self._load_feature_extractor()
|
196 |
+
return self._feature_extractor
|
197 |
+
|
198 |
+
def _load_feature_extractor(self):
|
199 |
+
"""Load the appropriate feature extractor based on model type"""
|
200 |
+
try:
|
201 |
+
if "swin" in self.model_name:
|
202 |
+
from transformers import AutoFeatureExtractor
|
203 |
+
return AutoFeatureExtractor.from_pretrained(self.model_name)
|
204 |
+
elif "convnext" in self.model_name:
|
205 |
+
from transformers import ConvNextFeatureExtractor
|
206 |
+
return ConvNextFeatureExtractor.from_pretrained(self.model_name)
|
207 |
+
else:
|
208 |
+
from transformers import ViTFeatureExtractor
|
209 |
+
return ViTFeatureExtractor.from_pretrained(self.model_name)
|
210 |
+
except Exception as e:
|
211 |
+
logger.error(f"Feature extractor initialization error: {e}")
|
212 |
+
return None
|
213 |
+
|
214 |
+
def _load_model(self):
|
215 |
+
try:
|
216 |
+
if "swin" in self.model_name:
|
217 |
+
from transformers import SwinForImageClassification
|
218 |
+
model = SwinForImageClassification.from_pretrained(
|
219 |
+
self.model_name,
|
220 |
+
num_labels=len(self.defect_classes),
|
221 |
+
ignore_mismatched_sizes=True
|
222 |
+
)
|
223 |
+
elif "convnext" in self.model_name:
|
224 |
+
from transformers import ConvNextForImageClassification
|
225 |
+
model = ConvNextForImageClassification.from_pretrained(
|
226 |
+
self.model_name,
|
227 |
+
num_labels=len(self.defect_classes),
|
228 |
+
ignore_mismatched_sizes=True
|
229 |
+
)
|
230 |
+
else:
|
231 |
+
from transformers import ViTForImageClassification
|
232 |
+
model = ViTForImageClassification.from_pretrained(
|
233 |
+
self.model_name,
|
234 |
+
num_labels=len(self.defect_classes),
|
235 |
+
ignore_mismatched_sizes=True
|
236 |
+
)
|
237 |
+
|
238 |
+
model = model.to(self.device)
|
239 |
+
|
240 |
+
# Reinitialize the classifier layer
|
241 |
+
with torch.no_grad():
|
242 |
+
if hasattr(model, 'classifier'):
|
243 |
+
in_features = model.classifier.in_features
|
244 |
+
model.classifier = torch.nn.Linear(in_features, len(self.defect_classes))
|
245 |
+
elif hasattr(model, 'head'):
|
246 |
+
in_features = model.head.in_features
|
247 |
+
model.head = torch.nn.Linear(in_features, len(self.defect_classes))
|
248 |
+
|
249 |
+
return model
|
250 |
+
except Exception as e:
|
251 |
+
logger.error(f"Model initialization error: {e}")
|
252 |
+
return None
|
253 |
+
|
254 |
+
def preprocess_image(self, image_bytes):
|
255 |
+
"""Preprocess image for model input"""
|
256 |
+
return _cached_preprocess_image(image_bytes, self.model_name)
|
257 |
+
|
258 |
+
def analyze_image(self, image):
|
259 |
+
"""Analyze image for defects"""
|
260 |
+
try:
|
261 |
+
if self.model is None:
|
262 |
+
raise ValueError("Model not properly initialized")
|
263 |
+
|
264 |
+
inputs = self.feature_extractor(
|
265 |
+
images=image,
|
266 |
+
return_tensors="pt"
|
267 |
+
)
|
268 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
269 |
+
|
270 |
+
with torch.no_grad():
|
271 |
+
outputs = self.model(**inputs)
|
272 |
+
|
273 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
274 |
+
|
275 |
+
confidence_threshold = 0.3
|
276 |
+
results = {
|
277 |
+
self.defect_classes[i]: float(probs[i])
|
278 |
+
for i in range(len(self.defect_classes))
|
279 |
+
if float(probs[i]) > confidence_threshold
|
280 |
+
}
|
281 |
+
|
282 |
+
if not results:
|
283 |
+
max_idx = torch.argmax(probs)
|
284 |
+
results = {self.defect_classes[int(max_idx)]: float(probs[max_idx])}
|
285 |
+
|
286 |
+
return results
|
287 |
+
|
288 |
+
except Exception as e:
|
289 |
+
logger.error(f"Analysis error: {str(e)}")
|
290 |
+
return None
|
291 |
+
|
292 |
+
@st.cache_data
|
293 |
+
def _cached_preprocess_image(image_bytes, model_name):
|
294 |
+
"""Cached version of image preprocessing"""
|
295 |
+
try:
|
296 |
+
image = Image.open(image_bytes)
|
297 |
+
if image.mode != 'RGB':
|
298 |
+
image = image.convert('RGB')
|
299 |
+
|
300 |
+
# Adjust size based on model requirements
|
301 |
+
if "convnext" in model_name:
|
302 |
+
width, height = 384, 384
|
303 |
+
else:
|
304 |
+
width, height = 224, 224
|
305 |
+
|
306 |
+
image = image.resize((width, height), Image.Resampling.LANCZOS)
|
307 |
+
return image
|
308 |
+
except Exception as e:
|
309 |
+
logger.error(f"Image preprocessing error: {e}")
|
310 |
+
return None
|
311 |
+
|
312 |
+
@st.cache_data
|
313 |
+
def get_groq_response(query: str, context: str) -> str:
|
314 |
+
"""Get response from Groq LLM with caching"""
|
315 |
+
try:
|
316 |
+
if not os.getenv("GROQ_API_KEY"):
|
317 |
+
return "Error: Groq API key not configured"
|
318 |
+
|
319 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
320 |
+
|
321 |
+
prompt = f"""Based on the following context about construction defects, answer the question.
|
322 |
+
Context: {context}
|
323 |
+
Question: {query}
|
324 |
+
Provide a detailed answer based on the given context."""
|
325 |
+
|
326 |
+
response = client.chat.completions.create(
|
327 |
+
messages=[
|
328 |
+
{
|
329 |
+
"role": "system",
|
330 |
+
"content": "You are a construction defect analysis expert."
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"role": "user",
|
334 |
+
"content": prompt
|
335 |
+
}
|
336 |
+
],
|
337 |
+
model="llama-3.3-70b-versatile",
|
338 |
+
temperature=0.7,
|
339 |
+
)
|
340 |
+
return response.choices[0].message.content
|
341 |
+
except Exception as e:
|
342 |
+
logger.error(f"Groq API error: {e}", exc_info=True)
|
343 |
+
return f"Error: Unable to get response from AI model. Exception: {str(e)}"
|
344 |
+
|
345 |
+
|
346 |
+
def create_plotly_confidence_chart(results):
|
347 |
+
"""Create an interactive confidence chart using Plotly"""
|
348 |
+
fig = go.Figure(data=[
|
349 |
+
go.Bar(
|
350 |
+
x=list(results.values()),
|
351 |
+
y=list(results.keys()),
|
352 |
+
orientation='h',
|
353 |
+
marker_color='rgb(26, 118, 255)',
|
354 |
+
text=[f'{v:.1%}' for v in results.values()],
|
355 |
+
textposition='auto',
|
356 |
+
)
|
357 |
+
])
|
358 |
+
|
359 |
+
fig.update_layout(
|
360 |
+
title='Defect Detection Confidence Levels',
|
361 |
+
xaxis_title='Confidence',
|
362 |
+
yaxis_title='Defect Type',
|
363 |
+
template='plotly_white',
|
364 |
+
height=400,
|
365 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
366 |
+
xaxis=dict(range=[0, 1])
|
367 |
+
)
|
368 |
+
return fig
|
369 |
+
|
370 |
+
def create_defect_card(title, description, severity, repair_method):
|
371 |
+
"""Create a styled card for defect information"""
|
372 |
+
severity_colors = {
|
373 |
+
"Critical": "red",
|
374 |
+
"High": "orange",
|
375 |
+
"Medium": "yellow",
|
376 |
+
"Low": "green"
|
377 |
+
}
|
378 |
+
|
379 |
+
return f"""
|
380 |
+
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 15px; margin: 10px 0;">
|
381 |
+
<h3 style="color: #1f77b4; margin: 0 0 10px 0;">{title}</h3>
|
382 |
+
<p><strong>Description:</strong> {description}</p>
|
383 |
+
<p><strong>Severity:</strong>
|
384 |
+
<span style="color: {severity_colors.get(severity, 'gray')}">
|
385 |
+
{severity}
|
386 |
+
</span>
|
387 |
+
</p>
|
388 |
+
<p><strong>Repair Method:</strong> {repair_method}</p>
|
389 |
+
</div>
|
390 |
+
"""
|
391 |
+
|
392 |
+
def main():
|
393 |
+
st.set_page_config(
|
394 |
+
page_title="Smart Construction Defect Analyzer",
|
395 |
+
page_icon="ποΈ",
|
396 |
+
layout="wide",
|
397 |
+
initial_sidebar_state="expanded"
|
398 |
+
)
|
399 |
+
|
400 |
+
# Custom CSS
|
401 |
+
st.markdown("""
|
402 |
+
<style>
|
403 |
+
.stApp {
|
404 |
+
background-color: #f8f9fa;
|
405 |
+
}
|
406 |
+
.css-1d391kg {
|
407 |
+
padding: 2rem 1rem;
|
408 |
+
}
|
409 |
+
.stButton>button {
|
410 |
+
width: 100%;
|
411 |
+
}
|
412 |
+
.upload-text {
|
413 |
+
text-align: center;
|
414 |
+
padding: 2rem;
|
415 |
+
border: 2px dashed #ccc;
|
416 |
+
border-radius: 10px;
|
417 |
+
background-color: #ffffff;
|
418 |
+
}
|
419 |
+
.info-box {
|
420 |
+
background-color: #e9ecef;
|
421 |
+
padding: 1rem;
|
422 |
+
border-radius: 10px;
|
423 |
+
margin: 1rem 0;
|
424 |
+
}
|
425 |
+
</style>
|
426 |
+
""", unsafe_allow_html=True)
|
427 |
+
|
428 |
+
# Initialize session state
|
429 |
+
if 'analyzer' not in st.session_state:
|
430 |
+
st.session_state.analyzer = ImageAnalyzer()
|
431 |
+
if 'rag_system' not in st.session_state:
|
432 |
+
st.session_state.rag_system = RAGSystem()
|
433 |
+
if 'analysis_history' not in st.session_state:
|
434 |
+
st.session_state.analysis_history = []
|
435 |
+
|
436 |
+
# Sidebar
|
437 |
+
with st.sidebar:
|
438 |
+
colored_header(
|
439 |
+
label="System Controls",
|
440 |
+
description="Settings and Information",
|
441 |
+
color_name="blue-70"
|
442 |
+
)
|
443 |
+
|
444 |
+
if os.getenv("GROQ_API_KEY"):
|
445 |
+
st.success("π’ AI System: Connected")
|
446 |
+
else:
|
447 |
+
st.error("π΄ AI System: Not configured")
|
448 |
+
|
449 |
+
add_vertical_space(2)
|
450 |
+
|
451 |
+
with st.expander("βΉοΈ About", expanded=True):
|
452 |
+
st.write("""
|
453 |
+
### Smart Construction Defect Analyzer
|
454 |
+
|
455 |
+
This advanced tool combines computer vision and AI to:
|
456 |
+
- Detect construction defects in images
|
457 |
+
- Provide detailed repair recommendations
|
458 |
+
- Answer technical questions
|
459 |
+
- Track analysis history
|
460 |
+
""")
|
461 |
+
|
462 |
+
with st.expander("π§ Settings"):
|
463 |
+
if st.button("Clear Analysis History"):
|
464 |
+
st.session_state.analysis_history = []
|
465 |
+
st.cache_data.clear()
|
466 |
+
st.success("History cleared!")
|
467 |
+
|
468 |
+
confidence_threshold = st.slider(
|
469 |
+
"Detection Confidence Threshold",
|
470 |
+
min_value=0.0,
|
471 |
+
max_value=1.0,
|
472 |
+
value=0.3,
|
473 |
+
step=0.1
|
474 |
+
)
|
475 |
+
|
476 |
+
# Main content
|
477 |
+
colored_header(
|
478 |
+
label="Construction Defect Analyzer",
|
479 |
+
description="Upload images and get instant defect analysis",
|
480 |
+
color_name="blue-70"
|
481 |
+
)
|
482 |
+
|
483 |
+
tab1, tab2, tab3 = st.tabs(["πΈ Image Analysis", "β Ask Expert", "π Analysis History"])
|
484 |
+
|
485 |
+
with tab1:
|
486 |
+
col1, col2 = st.columns([1, 1])
|
487 |
+
|
488 |
+
with col1:
|
489 |
+
st.markdown('<div class="upload-text">', unsafe_allow_html=True)
|
490 |
+
uploaded_file = st.file_uploader(
|
491 |
+
"Drop your construction image here",
|
492 |
+
type=["jpg", "jpeg", "png"],
|
493 |
+
key="image_uploader"
|
494 |
+
)
|
495 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
496 |
+
|
497 |
+
if uploaded_file:
|
498 |
+
try:
|
499 |
+
with st.spinner('Processing image...'):
|
500 |
+
processed_image = st.session_state.analyzer.preprocess_image(uploaded_file)
|
501 |
+
if processed_image:
|
502 |
+
st.image(processed_image, caption='Analyzed Image', use_column_width=True)
|
503 |
+
|
504 |
+
results = st.session_state.analyzer.analyze_image(processed_image)
|
505 |
+
if results:
|
506 |
+
# Store analysis in history
|
507 |
+
st.session_state.analysis_history.append({
|
508 |
+
'timestamp': datetime.now(),
|
509 |
+
'results': results,
|
510 |
+
'image': processed_image
|
511 |
+
})
|
512 |
+
except Exception as e:
|
513 |
+
st.error(f"Error: {str(e)}")
|
514 |
+
|
515 |
+
with col2:
|
516 |
+
if uploaded_file and results:
|
517 |
+
st.markdown("### Analysis Results")
|
518 |
+
|
519 |
+
# Interactive confidence chart
|
520 |
+
fig = create_plotly_confidence_chart(results)
|
521 |
+
st.plotly_chart(fig, use_container_width=True)
|
522 |
+
|
523 |
+
# Most critical defect
|
524 |
+
most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
|
525 |
+
st.info(f"π Primary Defect Detected: {most_likely_defect}")
|
526 |
+
|
527 |
+
# Get detailed information about the defect
|
528 |
+
context = st.session_state.rag_system.get_relevant_context(most_likely_defect)
|
529 |
+
if context:
|
530 |
+
st.markdown("### Defect Details")
|
531 |
+
st.markdown(create_defect_card(
|
532 |
+
most_likely_defect,
|
533 |
+
context.split('\n')[2].split(': ')[1],
|
534 |
+
context.split('\n')[1].split(': ')[1],
|
535 |
+
context.split('\n')[3].split(': ')[1]
|
536 |
+
), unsafe_allow_html=True)
|
537 |
+
|
538 |
+
with tab2:
|
539 |
+
st.markdown("### Ask the Construction Expert")
|
540 |
+
|
541 |
+
query_placeholder = "Example: What are the best repair methods for structural cracks?"
|
542 |
+
user_query = st.text_input("Your Question:", placeholder=query_placeholder)
|
543 |
+
|
544 |
+
if user_query:
|
545 |
+
with st.spinner('Consulting AI expert...'):
|
546 |
+
context = st.session_state.rag_system.get_relevant_context(user_query)
|
547 |
+
if context:
|
548 |
+
response = get_groq_response(user_query, context)
|
549 |
+
|
550 |
+
if not response.startswith("Error"):
|
551 |
+
st.markdown("### Expert Response")
|
552 |
+
st.markdown(response)
|
553 |
+
|
554 |
+
with st.expander("View Source Information"):
|
555 |
+
st.markdown(context)
|
556 |
+
else:
|
557 |
+
st.error(response)
|
558 |
+
|
559 |
+
with tab3:
|
560 |
+
if st.session_state.analysis_history:
|
561 |
+
for i, analysis in enumerate(reversed(st.session_state.analysis_history)):
|
562 |
+
with st.expander(f"Analysis {i+1} - {analysis['timestamp'].strftime('%Y-%m-%d %H:%M')}"):
|
563 |
+
col1, col2 = st.columns([1, 1])
|
564 |
+
with col1:
|
565 |
+
st.image(analysis['image'], caption='Analyzed Image', use_column_width=True)
|
566 |
+
with col2:
|
567 |
+
fig = create_plotly_confidence_chart(analysis['results'])
|
568 |
+
st.plotly_chart(fig, use_container_width=True)
|
569 |
+
else:
|
570 |
+
st.info("No analysis history available")
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
main()
|