Spaces:
Running
Running
import gradio as gr | |
import whisper | |
# Initialize the Whisper model | |
model = whisper.load_model("large") | |
def transcribe(audio_file): | |
# Whisper expects a filepath, so we use the 'filepath' type in gr.Audio | |
# audio_file now directly contains the path to the uploaded file | |
audio = whisper.load_audio(audio_file) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
options = whisper.DecodingOptions() | |
result = whisper.decode(model, mel, options) | |
return result.text | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(label="Upload your audio file", type="filepath"), | |
outputs="text", | |
title="Whisper ASR", | |
description="Upload an audio file and it will be transcribed using OpenAI's Whisper model." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() | |