Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisper
|
3 |
+
|
4 |
+
# Initialize the Whisper model
|
5 |
+
model = whisper.load_model("large")
|
6 |
+
|
7 |
+
def transcribe(audio_file):
|
8 |
+
audio = whisper.load_audio(audio_file.name)
|
9 |
+
audio = whisper.pad_or_trim(audio)
|
10 |
+
# Generate a mel spectrogram
|
11 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
12 |
+
# Options for decoding the spectrogram
|
13 |
+
options = whisper.DecodingOptions()
|
14 |
+
# Perform the transcription
|
15 |
+
result = whisper.decode(model, mel, options)
|
16 |
+
return result.text
|
17 |
+
|
18 |
+
# Create the Gradio interface
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=transcribe,
|
21 |
+
inputs=gr.inputs.Audio(source="upload", type="file", label="Upload your audio file"),
|
22 |
+
outputs="text",
|
23 |
+
title="Whisper ASR",
|
24 |
+
description="Upload an audio file and it will be transcribed using OpenAI's Whisper model."
|
25 |
+
)
|
26 |
+
|
27 |
+
# Launch the app
|
28 |
+
if __name__ == "__main__":
|
29 |
+
iface.launch()
|