Spaces:
Sleeping
Sleeping
Sharathhebbar24
commited on
Upload 3 files
Browse files- Dockerfile +13 -0
- main.py +83 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11
|
2 |
+
|
3 |
+
WORKDIR /
|
4 |
+
|
5 |
+
COPY ./requirements.txt /requirements.txt
|
6 |
+
RUN apt-get update && apt-get install -y build-essential libpq-dev \
|
7 |
+
&& python -m pip install --upgrade pip \
|
8 |
+
&& pip install --no-cache-dir -r /requirements.txt
|
9 |
+
|
10 |
+
|
11 |
+
COPY ./ /
|
12 |
+
|
13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "80"]
|
main.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
BertForQuestionAnswering,
|
5 |
+
BertTokenizerFast,
|
6 |
+
)
|
7 |
+
|
8 |
+
from scipy.special import softmax
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from fastapi import FastAPI, HTTPException
|
14 |
+
from fastapi.middleware.cors import CORSMiddleware
|
15 |
+
from pydantic import BaseModel
|
16 |
+
|
17 |
+
|
18 |
+
model_name = 'deepset/bert-base-uncased-squad2'
|
19 |
+
|
20 |
+
model = BertForQuestionAnswering.from_pretrained(model_name)
|
21 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_name)
|
22 |
+
|
23 |
+
app = FastAPI()
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
app.add_middleware(
|
28 |
+
CORSMiddleware,
|
29 |
+
allow_origins=["*"], # Allow all origins
|
30 |
+
allow_credentials=True,
|
31 |
+
allow_methods=["*"], # Allow all HTTP methods
|
32 |
+
allow_headers=["*"], # Allow all headers
|
33 |
+
)
|
34 |
+
|
35 |
+
def predict_answer(context, question):
|
36 |
+
inputs = tokenizer(question, context, return_tensors="pt", truncation=True, max_length=512)
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model(**inputs)
|
39 |
+
|
40 |
+
start_scores, end_scores = softmax(outputs.start_logits)[0], softmax(outputs.end_logits)[0]
|
41 |
+
start_idx = np.argmax(start_scores)
|
42 |
+
end_idx = np.argmax(end_scores)
|
43 |
+
|
44 |
+
confidence_score = (start_scores[start_idx] + end_scores[end_idx]) / 2
|
45 |
+
answer_ids = inputs.input_ids[0][start_idx: end_idx + 1]
|
46 |
+
answer_tokens = tokenizer.convert_ids_to_tokens(answer_ids)
|
47 |
+
answer = tokenizer.convert_tokens_to_string(answer_tokens)
|
48 |
+
if answer != tokenizer.cls_token:
|
49 |
+
return {
|
50 |
+
"answer": answer,
|
51 |
+
"score": confidence_score
|
52 |
+
}
|
53 |
+
else:
|
54 |
+
return {
|
55 |
+
"answer": "No answer found.",
|
56 |
+
"score": confidence_score
|
57 |
+
}
|
58 |
+
|
59 |
+
# Define the request model
|
60 |
+
class QnARequest(BaseModel):
|
61 |
+
context: str
|
62 |
+
question: str
|
63 |
+
|
64 |
+
# Define the response model
|
65 |
+
class QnAResponse(BaseModel):
|
66 |
+
answer: str
|
67 |
+
confidence: float
|
68 |
+
|
69 |
+
|
70 |
+
@app.post("/qna", response_model=QnAResponse)
|
71 |
+
async def extractive_qna(request: QnARequest):
|
72 |
+
context = request.context
|
73 |
+
question = request.question
|
74 |
+
# print(context, question)
|
75 |
+
if not context or not question:
|
76 |
+
raise HTTPException(status_code=400, detail="Context and question cannot be empty.")
|
77 |
+
|
78 |
+
try:
|
79 |
+
result = predict_answer(context, question)
|
80 |
+
print(result)
|
81 |
+
return QnAResponse(answer=result["answer"], confidence=result["score"])
|
82 |
+
except Exception as e:
|
83 |
+
raise HTTPException(status_code=500, detail=f"Error processing QnA: {str(e)}")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
transformers
|
4 |
+
scipy
|
5 |
+
pandas
|
6 |
+
numpy
|