ShawnAI's picture
Update app.py
f3d2bf0
raw
history blame
12.4 kB
import gradio as gr
import random
import time
from langchain import PromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains import LLMChain
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
import pinecone
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#OPENAI_API_KEY = ""
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
OPENAI_TEMP = 1
PINECONE_KEY = os.environ.get("PINECONE_KEY", "")
PINECONE_ENV = os.environ.get("PINECONE_ENV", "asia-northeast1-gcp")
PINECONE_INDEX = os.environ.get("PINECONE_INDEX", "3gpp")
EMBEDDING_MODEL = os.environ.get("PINECONE_INDEX", "sentence-transformers/all-mpnet-base-v2")
# return top-k text chunks from vector store
TOP_K_DEFAULT = 10
TOP_K_MAX = 25
BUTTON_MIN_WIDTH = 210
STATUS_NOK = "404-MODEL UNREADY-critical"
STATUS_OK = "200-MODEL LOADED-9cf"
FORK_BADGE = "Fork-HuggingFace Space-9cf"
def get_logo(inputs, logo) -> str:
return f"""https://img.shields.io/badge/{inputs}?style=flat&logo={logo}&logoColor=white"""
def get_status(inputs) -> str:
return f"""<img
src = "{get_logo(inputs, "openai")}";
style = "margin: 0 auto;"
>"""
KEY_INIT = "Initialize Model"
KEY_SUBMIT = "Submit"
KEY_CLEAR = "Clear"
MODEL_NULL = get_status(STATUS_NOK)
MODEL_DONE = get_status(STATUS_OK)
MODEL_WARNING = f"Please paste your OpenAI API Key from \
[openai.com](https://platform.openai.com/account/api-keys) and then **{KEY_INIT}**"
TAB_1 = "Chatbot"
FAVICON = './icon.svg'
LLM_LIST = ["gpt-3.5-turbo", "text-davinci-003"]
DOC_1 = '3GPP'
DOC_2 = 'HTTP2'
DOC_SUPPORTED = [DOC_1, DOC_2]
DOC_DEFAULT = [DOC_1]
webui_title = """
# OpenAI Chatbot Based on Vector Database
## Example of 3GPP
"""
dup_link = f'''<a href="https://huggingface.co/spaces/ShawnAI/3GPP-ChatBot?duplicate=true">
<img src="{get_logo(FORK_BADGE, "addthis")}"></a> '''
init_message = f"""Welcome to use 3GPP Chatbot, this demo toolkit is based on OpenAI with LangChain and Pinecone
1. Insert your OpenAI API key and click `{KEY_INIT}`
2. Insert your Question and click `{KEY_SUBMIT}`
"""
#----------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------
def init_model(api_key, emb_name, db_api_key, db_env, db_index):
try:
if (api_key and api_key.startswith("sk-") and len(api_key) > 50) and \
(emb_name and db_api_key and db_env and db_index):
embeddings = HuggingFaceEmbeddings(model_name=emb_name)
pinecone.init(api_key = db_api_key,
environment = db_env)
#llm = OpenAI(temperature=OPENAI_TEMP, model_name="gpt-3.5-turbo-0301")
llm_dict = {}
for llm_name in LLM_LIST:
if llm_name == "gpt-3.5-turbo":
llm_dict[llm_name] = ChatOpenAI(model_name=llm_name,
temperature = OPENAI_TEMP,
openai_api_key = api_key)
else:
llm_dict[llm_name] = OpenAI(model_name=llm_name,
temperature = OPENAI_TEMP,
openai_api_key = api_key)
'''
ChatOpenAI(model_name="gpt-3.5-turbo",
temperature = OPENAI_TEMP,
openai_api_key = api_key)
chain_1 = load_qa_chain(llm, chain_type="stuff")
#LLMChain(llm=llm, prompt=condense_question_prompt)
chain_2 = LLMChain(llm = llm,
prompt = PromptTemplate(template='{question}',
input_variables=['question']),
output_key = 'output_text')
'''
db = Pinecone.from_existing_index(index_name = db_index,
embedding = embeddings)
return api_key, MODEL_DONE, llm_dict, None, db, None
else:
return None,MODEL_NULL,None,None,None,None
except Exception as e:
print(e)
return None,MODEL_NULL,None,None,None,None
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human: {human}\nAI: {ai}")
return "\n".join(res)
def remove_duplicates(documents):
seen_content = set()
unique_documents = []
for doc in documents:
if doc.page_content not in seen_content:
seen_content.add(doc.page_content)
unique_documents.append(doc)
return unique_documents
def doc_similarity(query, db, top_k):
docsearch = db.as_retriever(search_kwargs={'k':top_k})
docs = docsearch.get_relevant_documents(query)
udocs = remove_duplicates(docs)
return udocs
def user(user_message, history):
return "", history+[[user_message, None]]
def bot(box_message, ref_message,
llm_dropdown, llm_dict, doc_list,
db, top_k):
# bot_message = random.choice(["Yes", "No"])
# 0 is user question, 1 is bot response
question = box_message[-1][0]
history = box_message[:-1]
if (not llm_dict) or (not doc_check) or (not db):
box_message[-1][1] = MODEL_WARNING
return box_message, "", ""
if not ref_message:
ref_message = question
details = f"Q: {question}"
else:
details = f"Q: {question}\nR: {ref_message}"
llm = llm_dict[llm_dropdown]
print(llm)
print(doc_list)
if DOC_1 in doc_list:
chain = load_qa_chain(llm, chain_type="stuff")
docs = doc_similarity(ref_message, db, top_k)
delta_top_k = top_k - len(docs)
if delta_top_k > 0:
docs = doc_similarity(ref_message, db, top_k+delta_top_k)
else:
chain = LLMChain(llm = llm,
prompt = PromptTemplate(template='{question}',
input_variables=['question']),
output_key = 'output_text')
docs = []
all_output = chain({"input_documents": docs,
"question": question,
"chat_history": get_chat_history(history)})
bot_message = all_output['output_text']
source = "".join([f"""<details> <summary>{doc.metadata["source"]}</summary>
{doc.page_content}
</details>""" for i, doc in enumerate(docs)])
#print(source)
box_message[-1][1] = bot_message
return box_message, "", [[details, bot_message + source]]
#----------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------
with gr.Blocks(
title = TAB_1,
theme = "Base",
css = """.bigbox {
min-height:250px;
}
""") as demo:
llm = gr.State()
chain_2 = gr.State() # not inuse
vector_db = gr.State()
gr.Markdown(webui_title)
gr.HTML(dup_link)
gr.Markdown(init_message)
with gr.Row():
with gr.Column(scale=10):
llm_api_textbox = gr.Textbox(
label = "OpenAI API Key",
# show_label = False,
value = OPENAI_API_KEY,
placeholder = "Paste Your OpenAI API Key (sk-...) and Hit ENTER",
lines=1,
type='password')
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
init = gr.Button(KEY_INIT) #.style(full_width=False)
model_statusbox = gr.HTML(MODEL_NULL)
with gr.Tab(TAB_1):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot(elem_classes="bigbox")
#with gr.Column(scale=1):
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
doc_check = gr.CheckboxGroup(choices = DOC_SUPPORTED,
value = DOC_DEFAULT,
label = "Reference Docs",
interactive=True)
llm_dropdown = gr.Dropdown(LLM_LIST,
value=LLM_LIST[0],
multiselect=False,
interactive=True,
label="LLM Selection",
)
with gr.Row():
with gr.Column(scale=10):
query = gr.Textbox(label="Question:",
lines=2)
ref = gr.Textbox(label="Reference(optional):")
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
clear = gr.Button(KEY_CLEAR)
submit = gr.Button(KEY_SUBMIT,variant="primary")
with gr.Tab("Details"):
top_k = gr.Slider(1,
TOP_K_MAX,
value=TOP_K_DEFAULT,
step=1,
label="Vector similarity top_k",
interactive=True)
detail_panel = gr.Chatbot(label="Related Docs")
with gr.Tab("Database"):
with gr.Row():
emb_textbox = gr.Textbox(
label = "Embedding Model",
# show_label = False,
value = EMBEDDING_MODEL,
placeholder = "Paste Your Embedding Model Repo on HuggingFace",
lines=1,
interactive=True,
type='email')
with gr.Accordion("Pinecone Database for "+DOC_1):
with gr.Row():
db_api_textbox = gr.Textbox(
label = "Pinecone API Key",
# show_label = False,
value = PINECONE_KEY,
placeholder = "Paste Your Pinecone API Key (xx-xx-xx-xx-xx) and Hit ENTER",
lines=1,
interactive=True,
type='password')
with gr.Row():
db_env_textbox = gr.Textbox(
label = "Pinecone Environment",
# show_label = False,
value = PINECONE_ENV,
placeholder = "Paste Your Pinecone Environment (xx-xx-xx) and Hit ENTER",
lines=1,
interactive=True,
type='email')
db_index_textbox = gr.Textbox(
label = "Pinecone Index",
# show_label = False,
value = PINECONE_INDEX,
placeholder = "Paste Your Pinecone Index (xxxx) and Hit ENTER",
lines=1,
interactive=True,
type='email')
init_input = [llm_api_textbox, emb_textbox, db_api_textbox, db_env_textbox, db_index_textbox]
init_output = [llm_api_textbox, model_statusbox,
llm, chain_2,
vector_db, chatbot]
llm_api_textbox.submit(init_model, init_input, init_output)
init.click(init_model, init_input, init_output)
submit.click(user,
[query, chatbot],
[query, chatbot],
queue=False).then(
bot,
[chatbot, ref,
llm_dropdown, llm, doc_check,
vector_db, top_k],
[chatbot, ref, detail_panel]
)
clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False)
#----------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------
if __name__ == "__main__":
demo.launch(share = False,
inbrowser = True,
favicon_path = FAVICON)