Spaces:
Runtime error
Runtime error
import gradio as gr | |
import random | |
import time | |
from langchain.chat_models import ChatOpenAI | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import Pinecone | |
from langchain.chains import LLMChain | |
from langchain.chains.retrieval_qa.base import RetrievalQA | |
from langchain.chains.question_answering import load_qa_chain | |
import pinecone | |
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
#OPENAI_API_KEY = "" | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "") | |
OPENAI_TEMP = 0 | |
PINECONE_KEY = os.environ["PINECONE_KEY"] | |
PINECONE_ENV = "asia-northeast1-gcp" | |
PINECONE_INDEX = "3gpp" | |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2" | |
# return top-k text chunk from vector store | |
VECTOR_SEARCH_TOP_K = 10 | |
# LLM input history length | |
LLM_HISTORY_LEN = 3 | |
BUTTON_MIN_WIDTH = 150 | |
STATUS_NOK = "404-MODEL UNREADY-red" | |
STATUS_OK = "200-MODEL LOADED-brightgreen" | |
def get_status(inputs) -> str: | |
return f"""<img src="https://img.shields.io/badge/{inputs}?style=flat"></a>""" | |
MODEL_NULL = get_status(STATUS_NOK) | |
MODEL_DONE = get_status(STATUS_OK) | |
MODEL_WARNING = "Please paste your OpenAI API Key from openai.com and press 'Enter' to initialize this application!" | |
webui_title = """ | |
# 3GPP OpenAI Chatbot for Hackathon Demo | |
""" | |
KEY_INIT = "Initialize Model" | |
KEY_SUBMIT = "Submit" | |
KEY_CLEAR = "Clear" | |
init_message = f"""Welcome to use 3GPP Chatbot, this demo toolkit is based on OpenAI with LangChain and Pinecone | |
1. Insert your OpenAI API key and click `{KEY_INIT}` | |
2. Insert your Question and click `{KEY_SUBMIT}` | |
""" | |
def init_model(api_key): | |
try: | |
if api_key and api_key.startswith("sk-") and len(api_key) > 50: | |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) | |
pinecone.init(api_key = PINECONE_KEY, | |
environment = PINECONE_ENV) | |
#llm = OpenAI(temperature=OPENAI_TEMP, model_name="gpt-3.5-turbo-0301") | |
llm = ChatOpenAI(temperature = OPENAI_TEMP, | |
openai_api_key = api_key) | |
chain = load_qa_chain(llm, chain_type="stuff") | |
db = Pinecone.from_existing_index(index_name = PINECONE_INDEX, | |
embedding = embeddings) | |
return api_key, MODEL_DONE, chain, db, None | |
else: | |
return None,MODEL_NULL,None,None,None | |
except Exception as e: | |
print(e) | |
return None,MODEL_NULL,None,None,None | |
def get_chat_history(inputs) -> str: | |
res = [] | |
for human, ai in inputs: | |
res.append(f"Human: {human}\nAI: {ai}") | |
return "\n".join(res) | |
def remove_duplicates(documents): | |
seen_content = set() | |
unique_documents = [] | |
for doc in documents: | |
if doc.page_content not in seen_content: | |
seen_content.add(doc.page_content) | |
unique_documents.append(doc) | |
return unique_documents | |
def doc_similarity(query, db, top_k): | |
docsearch = db.as_retriever(search_kwargs={'k':top_k}) | |
docs = docsearch.get_relevant_documents(query) | |
return remove_duplicates(docs) | |
def user(user_message, history): | |
return "", history+[[user_message, None]] | |
def bot(box_message, ref_message, chain, db, top_k): | |
# bot_message = random.choice(["Yes", "No"]) | |
# 0 is user question, 1 is bot response | |
question = box_message[-1][0] | |
history = box_message[:-1] | |
if (not chain) or (not db): | |
box_message[-1][1] = MODEL_WARNING | |
return box_message, "", "" | |
if not ref_message: | |
ref_message = question | |
details = f"Q: {question}" | |
else: | |
details = f"Q: {question}\nR: {ref_message}" | |
docs = doc_similarity(ref_message, db, top_k) | |
delta_top_k = top_k - len(docs) | |
if delta_top_k > 0: | |
docs = doc_similarity(ref_message, db, top_k+delta_top_k) | |
print(docs) | |
all_output = chain({"input_documents": docs, | |
"question": question, | |
"chat_history": get_chat_history(history)}) | |
bot_message = all_output['output_text'] | |
source = "".join([f"""<details> <summary>{doc.metadata["source"]}</summary> | |
{doc.page_content} | |
</details>""" for i, doc in enumerate(docs)]) | |
#print(source) | |
box_message[-1][1] = bot_message | |
return box_message, "", [[details, source]] | |
with gr.Blocks(css=""".bigbox { | |
min-height:200px; | |
}""") as demo: | |
llm_chain = gr.State() | |
vector_db = gr.State() | |
gr.Markdown(webui_title) | |
gr.Markdown(init_message) | |
with gr.Row(): | |
with gr.Column(scale=9): | |
api_textbox = gr.Textbox( | |
label = "OpenAI API Key", | |
value = OPENAI_API_KEY, | |
placeholder = "Paste Your OpenAI API Key (sk-...) and Hit ENTER", | |
lines=1, | |
type='password') | |
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH): | |
init = gr.Button(KEY_INIT).style(full_width=False) | |
model_statusbox = gr.HTML(MODEL_NULL) | |
with gr.Tab("3GPP-Chatbot"): | |
with gr.Row(): | |
with gr.Column(scale=10): | |
chatbot = gr.Chatbot(elem_classes="bigbox") | |
''' | |
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH): | |
temp = gr.Slider(0, | |
2, | |
value=OPENAI_TEMP, | |
step=0.1, | |
label="temperature", | |
interactive=True) | |
init = gr.Button("Init") | |
''' | |
with gr.Row(): | |
with gr.Column(scale=10): | |
query = gr.Textbox(label="Question:", | |
lines=2) | |
ref = gr.Textbox(label="Reference(optional):") | |
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH): | |
clear = gr.Button(KEY_CLEAR) | |
submit = gr.Button(KEY_SUBMIT,variant="primary") | |
with gr.Tab("Details"): | |
top_k = gr.Slider(1, | |
20, | |
value=VECTOR_SEARCH_TOP_K, | |
step=1, | |
label="Vector similarity top_k", | |
interactive=True) | |
detail_panel = gr.Chatbot(label="Related Docs") | |
api_textbox.submit(init_model, | |
api_textbox, | |
[api_textbox, model_statusbox, llm_chain, vector_db, chatbot]) | |
init.click(init_model, | |
api_textbox, | |
[api_textbox, model_statusbox, llm_chain, vector_db, chatbot]) | |
submit.click(user, | |
[query, chatbot], | |
[query, chatbot], | |
queue=False).then( | |
bot, | |
[chatbot, ref, llm_chain, vector_db, top_k], | |
[chatbot, ref, detail_panel] | |
) | |
clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False) | |
if __name__ == "__main__": | |
demo.launch(share=False, inbrowser=True) | |