ShawnAI commited on
Commit
144519d
·
1 Parent(s): 96c1e48

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -5,7 +5,7 @@ import time
5
  from langchain import PromptTemplate
6
  from langchain.llms import OpenAI
7
  from langchain.chat_models import ChatOpenAI
8
- from langchain.embeddings import HuggingFaceEmbeddings
9
  from langchain.vectorstores import Pinecone
10
  from langchain.chains import LLMChain
11
  from langchain.chains.question_answering import load_qa_chain
@@ -27,10 +27,11 @@ PINECONE_INDEX = os.environ.get("PINECONE_INDEX", '3gpp-r16')
27
  PINECONE_LINK = "[Pinecone](https://www.pinecone.io)"
28
  LANGCHAIN_LINK = "[LangChain](https://python.langchain.com/en/latest/index.html)"
29
 
30
- EMBEDDING_MODEL = os.environ.get("PINECONE_INDEX", "sentence-transformers/all-mpnet-base-v2")
 
31
 
32
  # return top-k text chunks from vector store
33
- TOP_K_DEFAULT = 15
34
  TOP_K_MAX = 30
35
  SCORE_DEFAULT = 0.3
36
 
@@ -122,11 +123,11 @@ Question:
122
  {question}
123
 
124
  Optinal:
125
- Don't use standalone clause/figure name in the answer, expand it with corresponding metadata TS name
126
 
127
  Desired format:
128
  Clause/figure name: <dot_separated_numbers>
129
- TS name: [\w\.]
130
 
131
  Answer:"""
132
  )
@@ -171,7 +172,7 @@ def init_model(api_key, emb_name, db_api_key, db_env, db_index):
171
  if not (emb_name and db_api_key and db_env and db_index):
172
  return api_key,MODEL_DONE+DOCS_NULL,llm_dict,None,None,None
173
 
174
- embeddings = HuggingFaceEmbeddings(model_name=emb_name)
175
 
176
  pinecone.init(api_key = db_api_key,
177
  environment = db_env)
 
5
  from langchain import PromptTemplate
6
  from langchain.llms import OpenAI
7
  from langchain.chat_models import ChatOpenAI
8
+ from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
9
  from langchain.vectorstores import Pinecone
10
  from langchain.chains import LLMChain
11
  from langchain.chains.question_answering import load_qa_chain
 
27
  PINECONE_LINK = "[Pinecone](https://www.pinecone.io)"
28
  LANGCHAIN_LINK = "[LangChain](https://python.langchain.com/en/latest/index.html)"
29
 
30
+ EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "hkunlp/instructor-large")
31
+ EMBEDDING_LOADER = HuggingFaceInstructEmbeddings
32
 
33
  # return top-k text chunks from vector store
34
+ TOP_K_DEFAULT = 7
35
  TOP_K_MAX = 30
36
  SCORE_DEFAULT = 0.3
37
 
 
123
  {question}
124
 
125
  Optinal:
126
+ Expand clause/figure name with corresponding metadata TS name in the answer.
127
 
128
  Desired format:
129
  Clause/figure name: <dot_separated_numbers>
130
+ TS name: ^[\w\.]$
131
 
132
  Answer:"""
133
  )
 
172
  if not (emb_name and db_api_key and db_env and db_index):
173
  return api_key,MODEL_DONE+DOCS_NULL,llm_dict,None,None,None
174
 
175
+ embeddings = EMBEDDING_LOADER(model_name=emb_name)
176
 
177
  pinecone.init(api_key = db_api_key,
178
  environment = db_env)