Shivam29rathore commited on
Commit
71fdb73
Β·
1 Parent(s): a0c33a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -78,6 +78,7 @@ def pegasus(text):
78
  length = len(sentence)
79
 
80
  sentences = [sentence.strip() for sentence in sentences]
 
81
  # Append all tokenized sentences
82
  if sentences:
83
  tokenized_sentences.append(sentences)
@@ -89,6 +90,11 @@ def pegasus(text):
89
  global summary
90
  # Create an empty array for all summaries
91
  summary = []
 
 
 
 
 
92
  # Loop to encode tokens, to generate abstractive summary and finally decode tokens
93
  for token in tokenized:
94
  # Encoding
@@ -97,7 +103,7 @@ def pegasus(text):
97
  inputs = inputs.to(device)
98
  # Get summaries from transformer model
99
  all_summary = model2.to(device).generate(inputs,do_sample=True,
100
- max_length=50, top_k=50, top_p=0.95,
101
  num_beams = 5, early_stopping=True)
102
  # num_return_sequences=5)
103
  # length_penalty=0.2, no_repeat_ngram_size=2
 
78
  length = len(sentence)
79
 
80
  sentences = [sentence.strip() for sentence in sentences]
81
+ size = len(sentences)
82
  # Append all tokenized sentences
83
  if sentences:
84
  tokenized_sentences.append(sentences)
 
90
  global summary
91
  # Create an empty array for all summaries
92
  summary = []
93
+ if size <= 4:
94
+ max_length= size
95
+ else:
96
+ max_length = size//4
97
+
98
  # Loop to encode tokens, to generate abstractive summary and finally decode tokens
99
  for token in tokenized:
100
  # Encoding
 
103
  inputs = inputs.to(device)
104
  # Get summaries from transformer model
105
  all_summary = model2.to(device).generate(inputs,do_sample=True,
106
+ max_length=max_length, top_k=50, top_p=0.95,
107
  num_beams = 5, early_stopping=True)
108
  # num_return_sequences=5)
109
  # length_penalty=0.2, no_repeat_ngram_size=2