Spaces:
Runtime error
Runtime error
Sidharthan
commited on
Commit
·
9d2f477
1
Parent(s):
301f7c4
Added the application files, including the inference endpoints and configs
Browse files- Dockerfile +28 -0
- app.py +78 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use CUDA-compatible base image if you need GPU support
|
2 |
+
# For CPU-only:
|
3 |
+
FROM python:3.9-slim
|
4 |
+
|
5 |
+
# Set working directory
|
6 |
+
WORKDIR /app
|
7 |
+
|
8 |
+
# Install system dependencies
|
9 |
+
RUN apt-get update && apt-get install -y \
|
10 |
+
build-essential \
|
11 |
+
git \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
# Copy requirements first to leverage Docker cache
|
15 |
+
COPY requirements.txt .
|
16 |
+
|
17 |
+
# Install Python dependencies
|
18 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
19 |
+
pip install --no-cache-dir -r requirements.txt
|
20 |
+
|
21 |
+
# Copy the application code
|
22 |
+
COPY . .
|
23 |
+
|
24 |
+
# Expose the port the app runs on
|
25 |
+
EXPOSE 7860
|
26 |
+
|
27 |
+
# Command to run the application
|
28 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from peft import AutoPeftModelForCausalLM
|
6 |
+
import torch
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
app = FastAPI(title="Gemma Script Generator API")
|
10 |
+
|
11 |
+
# Load model and tokenizer
|
12 |
+
MODEL_NAME = "Sidharthan/gemma2_scripter"
|
13 |
+
|
14 |
+
try:
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
16 |
+
MODEL_NAME,
|
17 |
+
trust_remote_code=True
|
18 |
+
)
|
19 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
20 |
+
MODEL_NAME,
|
21 |
+
device_map="auto", # Will use CPU if GPU not available
|
22 |
+
trust_remote_code=True,
|
23 |
+
#load_in_4bit=True
|
24 |
+
)
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error loading model: {str(e)}")
|
27 |
+
raise
|
28 |
+
|
29 |
+
class GenerationRequest(BaseModel):
|
30 |
+
message: str
|
31 |
+
max_length: Optional[int] = 512
|
32 |
+
temperature: Optional[float] = 0.7
|
33 |
+
top_p: Optional[float] = 0.95
|
34 |
+
top_k: Optional[int] = 50
|
35 |
+
repetition_penalty: Optional[float] = 1.2
|
36 |
+
|
37 |
+
class GenerationResponse(BaseModel):
|
38 |
+
generated_text: str
|
39 |
+
|
40 |
+
@app.post("/generate", response_model=GenerationResponse)
|
41 |
+
async def generate_script(request: GenerationRequest):
|
42 |
+
try:
|
43 |
+
# Format prompt
|
44 |
+
prompt = request.message
|
45 |
+
# Tokenize input
|
46 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
47 |
+
if torch.cuda.is_available():
|
48 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
49 |
+
|
50 |
+
# Generate
|
51 |
+
outputs = model.generate(
|
52 |
+
**inputs,
|
53 |
+
max_length=request.max_length,
|
54 |
+
do_sample=True,
|
55 |
+
temperature=request.temperature,
|
56 |
+
top_p=request.top_p,
|
57 |
+
top_k=request.top_k,
|
58 |
+
repetition_penalty=request.repetition_penalty,
|
59 |
+
num_return_sequences=1,
|
60 |
+
pad_token_id=tokenizer.pad_token_id,
|
61 |
+
eos_token_id=tokenizer.eos_token_id
|
62 |
+
)
|
63 |
+
|
64 |
+
# Decode output
|
65 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
+
|
67 |
+
return GenerationResponse(generated_text=generated_text)
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
raise HTTPException(status_code=500, detail=str(e))
|
71 |
+
|
72 |
+
@app.get("/health")
|
73 |
+
async def health_check():
|
74 |
+
return {"status": "healthy"}
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
import uvicorn
|
78 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
peft
|
6 |
+
pydantic
|
7 |
+
bitsandbytes
|
8 |
+
accelerate
|