File size: 1,902 Bytes
04bbcce 2d9cdd3 04bbcce 2d9cdd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import torch
from torchvision import transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
import matplotlib.pyplot as plt
import PIL
import io
from PIL import Image
import numpy as np
import random
transform = transforms.ToTensor()
targets = None
device = torch.device("cpu")
mu = [0.49139968, 0.48215841, 0.44653091]
std = [0.24703223, 0.24348513, 0.26158784]
inv_normalize = transforms.Normalize(
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
std=[1/0.23, 1/0.23, 1/0.23]
)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
transform = transforms.ToTensor()
def get_examples():
example_images = [f'{c}.jpg' for c in classes]
example_top = [random.randint(2, 9) for r in range(10)]
example_transparency = [random.choice([0.6, 0.7, 0.8]) for r in range(10)]
examples = [[example_images[i], example_top[i], example_transparency[i]] for i in range(len(example_images))]
return(examples)
def image_to_array(input_img, model, layer_val, transparency=0.6):
input_tensor = input_img[0]
print(input_tensor.shape)
cam = GradCAM(model=model, target_layers=[model.res_block2.conv[-layer_val]])
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
grayscale_cam = grayscale_cam[0, :]
img = input_tensor.squeeze(0)
img = inv_normalize(img)
rgb_img = np.transpose(img, (1, 2, 0))
rgb_img = rgb_img.numpy()
visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True,
image_weight=transparency)
plt.imshow(visualization)
plt.title(r"Correct: " + classes[input_img[1].item()] + '\n' + 'Output: ' + classes[input_img[2].item()])
with io.BytesIO() as buffer:
plt.savefig(buffer, format = "png")
buffer.seek(0)
image = Image.open(buffer)
ar = np.asarray(image)
return(ar)
|