Siyun He
commited on
Commit
·
5144969
1
Parent(s):
5b77f0f
upload code and model
Browse files- app.py +54 -0
- grass_wood_classification_model.pth +3 -0
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision import models, transforms
|
5 |
+
from torchvision.models import ResNet18_Weights
|
6 |
+
|
7 |
+
# Load the saved model
|
8 |
+
model = models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
|
9 |
+
model.fc = nn.Linear(model.fc.in_features, 1000) # Adjust to match the original model's output units
|
10 |
+
model.load_state_dict(torch.load('grass_wood_classification_model.pth'))
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
# Create a new model with the correct final layer
|
14 |
+
new_model = models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
|
15 |
+
new_model.fc = nn.Linear(new_model.fc.in_features, 2) # Adjust to match the desired output units
|
16 |
+
|
17 |
+
# Copy the weights and biases from the loaded model to the new model
|
18 |
+
new_model.fc.weight.data = model.fc.weight.data[0:2] # Copy only the first 2 output units
|
19 |
+
new_model.fc.bias.data = model.fc.bias.data[0:2]
|
20 |
+
|
21 |
+
# Define the preprocessing function
|
22 |
+
def preprocess_image(image):
|
23 |
+
preprocess = transforms.Compose([
|
24 |
+
transforms.Resize(256),
|
25 |
+
transforms.CenterCrop(224),
|
26 |
+
transforms.ToTensor(),
|
27 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
28 |
+
])
|
29 |
+
input_tensor = preprocess(image)
|
30 |
+
input_batch = input_tensor.unsqueeze(0) # Add a batch dimension
|
31 |
+
return input_batch
|
32 |
+
|
33 |
+
# Define the prediction function
|
34 |
+
def predict(image):
|
35 |
+
input_batch = preprocess_image(image)
|
36 |
+
new_model.eval()
|
37 |
+
with torch.no_grad():
|
38 |
+
output = new_model(input_batch)
|
39 |
+
_, predicted_class = output.max(1)
|
40 |
+
class_names = ['grass', 'wood']
|
41 |
+
predicted_class_name = class_names[predicted_class.item()]
|
42 |
+
return predicted_class_name
|
43 |
+
|
44 |
+
# Create the Gradio interface
|
45 |
+
demo = gr.Interface(
|
46 |
+
fn=predict,
|
47 |
+
inputs=gr.Image(type='pil', label="Upload an Image"), # Use 'pil' to match the input type
|
48 |
+
outputs="text",
|
49 |
+
title="Grass or Wood Classifier Using ResNet18",
|
50 |
+
description="Upload an image to classify it as either grass or wood."
|
51 |
+
)
|
52 |
+
|
53 |
+
# Launch the interface
|
54 |
+
demo.launch(share=True)
|
grass_wood_classification_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52c0507644bb63b668eb8ef00c0fa55a6a5e20811088274be049551fac2aa78f
|
3 |
+
size 46838286
|