File size: 3,524 Bytes
aea6c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d61727
aea6c92
8d61727
 
 
 
aea6c92
 
 
 
 
29cb19e
 
 
aea6c92
 
 
29cb19e
aea6c92
 
 
29cb19e
aea6c92
29cb19e
 
 
 
 
cf85ac5
29cb19e
cf85ac5
 
29cb19e
 
74def1e
 
 
 
29cb19e
aea6c92
29cb19e
 
74def1e
 
22360ca
 
29cb19e
22360ca
 
aea6c92
29cb19e
 
 
aea6c92
29cb19e
aea6c92
74def1e
aea6c92
 
29cb19e
aea6c92
 
 
 
 
 
 
 
 
 
 
 
668c3c8
4713b6b
3afcea0
aea6c92
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import cv2
import cvzone
import numpy as np
import os
import gradio as gr

# Load the YuNet model
model_path = 'face_detection_yunet_2023mar.onnx'
face_detector = cv2.FaceDetectorYN.create(model_path, "", (320, 320))

# Initialize the glass number
num = 1
overlay = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED)

# Count glasses files
def count_files_in_directory(directory):
    file_count = 0
    for root, dirs, files in os.walk(directory):
        file_count += len(files)
    return file_count

directory_path = 'glasses'
total_glass_num = count_files_in_directory(directory_path)

# Change glasses
def change_glasses():
    global num, overlay
    num += 1
    if num > total_glass_num:
        num = 1
    overlay = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED)
    return overlay

# Process frame for overlay
def process_frame(frame):
    global overlay
    # Ensure the frame is writable
    frame = np.array(frame, copy=True)

    height, width = frame.shape[:2]
    face_detector.setInputSize((width, height))
    _, faces = face_detector.detect(frame)

    if faces is not None:
        for face in faces:
            x, y, w, h = face[:4].astype(int)
            face_landmarks = face[4:14].reshape(5, 2).astype(int)  # Facial landmarks

            # Get the nose position
            nose_x, nose_y = face_landmarks[2].astype(int)
            # Left and right eye positions
            left_eye_x, left_eye_y = face_landmarks[0].astype(int)
            right_eye_x, right_eye_y = face_landmarks[1].astype(int)

            # Calculate the midpoint between the eyes
            eye_center_x = (left_eye_x + right_eye_x) // 2
            eye_center_y = (left_eye_y + right_eye_y) // 2

            # Calculate the angle of rotation
            delta_x = right_eye_x - left_eye_x
            delta_y = right_eye_y - left_eye_y
            angle = np.degrees(np.arctan2(delta_y, delta_x))

            # Resize the overlay
            overlay_resize = cv2.resize(overlay, (int(w * 1.15), int(h * 0.8)))

            # Rotate the overlay
            overlay_center = (overlay_resize.shape[1] // 2, overlay_resize.shape[0] // 2)
            rotation_matrix = cv2.getRotationMatrix2D(overlay_center, angle, 1.0)
            overlay_rotated = cv2.warpAffine(
                overlay_resize, rotation_matrix, 
                (overlay_resize.shape[1], overlay_resize.shape[0]),
                flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0, 0)
            )

            # Calculate the position to center the glasses on the eyes
            overlay_x = eye_center_x - overlay_rotated.shape[1] // 2
            overlay_y = eye_center_y - overlay_rotated.shape[0] // 2

            # Overlay the glasses
            try:
                frame = cvzone.overlayPNG(frame, overlay_rotated, [overlay_x, overlay_y])
            except Exception as e:
                print(f"Error overlaying glasses: {e}")
                
    return frame

# Gradio webcam input
def webcam_input(frame):
    frame = process_frame(frame)
    return frame

# Gradio Interface
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            input_img = gr.Image(label="Input", sources="webcam", streaming=True)
            next_button = gr.Button("Next Glasses")
    input_img.stream(webcam_input, [input_img], [input_img], stream_every=0.1, concurrency_limit=30)
    next_button.click(change_glasses, [], [])
if __name__ == "__main__":
    demo.launch(share=True)