File size: 8,328 Bytes
aea6c92
 
 
 
 
acd6b6a
215339c
aea6c92
 
 
 
 
acd6b6a
 
 
7aff7cc
aea6c92
 
 
 
 
 
 
 
 
 
 
7aff7cc
 
 
 
 
 
 
 
 
 
 
 
 
92727b3
 
 
 
 
 
 
 
 
aea6c92
 
 
 
8d61727
aea6c92
8d61727
 
 
 
aea6c92
 
7aff7cc
aea6c92
 
29cb19e
aea6c92
 
 
29cb19e
acd6b6a
 
 
7aff7cc
92727b3
acd6b6a
aea6c92
 
7aff7cc
 
29cb19e
 
cf85ac5
 
 
29cb19e
74def1e
 
 
35c6cce
 
aea6c92
74def1e
 
22360ca
7aff7cc
29cb19e
22360ca
 
aea6c92
29cb19e
 
aea6c92
 
74def1e
aea6c92
 
7aff7cc
acd6b6a
 
 
92727b3
acd6b6a
92727b3
aea6c92
d04b2ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aebdd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d04b2ef
 
 
215339c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d04b2ef
 
aea6c92
d04b2ef
92727b3
d04b2ef
92727b3
aea6c92
 
52be6f8
 
d04b2ef
 
4aebdd5
52be6f8
 
d04b2ef
52be6f8
7aff7cc
92727b3
52be6f8
 
7aff7cc
52be6f8
215339c
 
 
 
7aff7cc
aea6c92
d04b2ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import cv2
import cvzone
import numpy as np
import os
import gradio as gr
import mediapipe as mp
from datetime import datetime

# Load the YuNet model
model_path = 'face_detection_yunet_2023mar.onnx'
face_detector = cv2.FaceDetectorYN.create(model_path, "", (320, 320))

# Initialize MediaPipe Face Mesh
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)

# Initialize the glass number
num = 1
overlay = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED)

# Count glasses files
def count_files_in_directory(directory):
    file_count = 0
    for root, dirs, files in os.walk(directory):
        file_count += len(files)
    return file_count

# Determine face shape
def determine_face_shape(landmarks):
    # Example logic to determine face shape based on landmarks
    # This is a simplified version and may need adjustments
    jaw_width = np.linalg.norm(landmarks[0] - landmarks[16])
    face_height = np.linalg.norm(landmarks[8] - landmarks[27])
    if jaw_width / face_height > 1.5:
        return "Round"
    elif jaw_width / face_height < 1.2:
        return "Oval"
    else:
        return "Square"

# Recommend glass shape based on face shape
def recommend_glass_shape(face_shape):
    if face_shape == "Round":
        return "Square"
    elif face_shape == "Oval":
        return "Round"
    else:
        return "Square"

directory_path = 'glasses'
total_glass_num = count_files_in_directory(directory_path)

# Change glasses
def change_glasses():
    global num, overlay
    num += 1
    if num > total_glass_num:
        num = 1
    overlay = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED)
    return overlay

# Process frame for overlay and face shape detection
def process_frame(frame):
    global overlay
    frame = np.array(frame, copy=True)
    height, width = frame.shape[:2]
    face_detector.setInputSize((width, height))
    _, faces = face_detector.detect(frame)

    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    results = face_mesh.process(frame_rgb)

    face_shape = "Unknown"
    glass_shape = "Unknown"
    if faces is not None and results.multi_face_landmarks:
        for face in faces:
            x, y, w, h = face[:4].astype(int)
            face_landmarks = face[4:14].reshape(5, 2).astype(int)

            left_eye_x, left_eye_y = face_landmarks[0].astype(int)
            right_eye_x, right_eye_y = face_landmarks[1].astype(int)

            eye_center_x = (left_eye_x + right_eye_x) // 2
            eye_center_y = (left_eye_y + right_eye_y) // 2

            delta_x = right_eye_x - left_eye_x
            delta_y = right_eye_y - left_eye_y
            angle = np.degrees(np.arctan2(delta_y, delta_x))
            angle = -angle

            overlay_resize = cv2.resize(overlay, (int(w * 1.15), int(h * 0.8)))
            overlay_center = (overlay_resize.shape[1] // 2, overlay_resize.shape[0] // 2)
            rotation_matrix = cv2.getRotationMatrix2D(overlay_center, angle, 1.0)
            overlay_rotated = cv2.warpAffine(
                overlay_resize, rotation_matrix,
                (overlay_resize.shape[1], overlay_resize.shape[0]),
                flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0, 0)
            )

            overlay_x = eye_center_x - overlay_rotated.shape[1] // 2
            overlay_y = eye_center_y - overlay_rotated.shape[0] // 2

            try:
                frame = cvzone.overlayPNG(frame, overlay_rotated, [overlay_x, overlay_y])
            except Exception as e:
                print(f"Error overlaying glasses: {e}")

            for face_landmarks_mp in results.multi_face_landmarks:
                landmarks = np.array([(lm.x * frame.shape[1], lm.y * frame.shape[0]) for lm in face_landmarks_mp.landmark])
                face_shape = determine_face_shape(landmarks)
                glass_shape = recommend_glass_shape(face_shape)

    return frame, face_shape, glass_shape

# Transform function
def transform_cv2(frame, transform):
    if transform == "cartoon":
        # prepare color
        img_color = cv2.pyrDown(cv2.pyrDown(frame))
        for _ in range(6):
            img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
        img_color = cv2.pyrUp(cv2.pyrUp(img_color))

        # prepare edges
        img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
        img_edges = cv2.adaptiveThreshold(
            cv2.medianBlur(img_edges, 7),
            255,
            cv2.ADAPTIVE_THRESH_MEAN_C,
            cv2.THRESH_BINARY,
            9,
            2,
        )
        img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
        # combine color and edges
        img = cv2.bitwise_and(img_color, img_edges)
        return img
    elif transform == "edges":
        # perform edge detection
        img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
        return img
    
    elif transform == "sepia":
        # apply sepia effect
        kernel = np.array([[0.272, 0.534, 0.131],
                           [0.349, 0.686, 0.168],
                           [0.393, 0.769, 0.189]])
        img = cv2.transform(frame, kernel)
        img = np.clip(img, 0, 255)  # ensure values are within byte range
        # Convert BGR to RGB if necessary (for display purposes)
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        return img_rgb

    elif transform == "negative":
        # apply negative effect
        img = cv2.bitwise_not(frame)
        return img

    elif transform == "sketch":
        # apply sketch effect
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        inv_gray = cv2.bitwise_not(gray)
        blur = cv2.GaussianBlur(inv_gray, (21, 21), 0)
        inv_blur = cv2.bitwise_not(blur)
        img = cv2.divide(gray, inv_blur, scale=256.0)
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        return img

    elif transform == "blur":
        # apply blur effect
        img = cv2.GaussianBlur(frame, (15, 15), 0)
        return img

    else:
        return frame
    
def refresh_interface():
    # Reset the image to an empty state or a default image
    input_img.update(value=None)

    # Return a message indicating the interface has been refreshed
    return "Interface refreshed!"

def save_frame(frame):
       # Convert frame to RGB
       frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

       # Create a unique filename using the current timestamp
       filename = f"saved_frame_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"

       # Save the frame
       cv2.imwrite(filename, frame)

       # Refresh the interfaceq
       refresh_interface()

       return f"Frame saved as '{filename}'"



# Gradio webcam input
def webcam_input(frame, transform):
    frame, face_shape, glass_shape = process_frame(frame)
    frame = transform_cv2(frame, transform)
    return frame, face_shape, glass_shape

# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue")) as demo:
    gr.Markdown("<h1 style='text-align: center; font-weight: bold;'>🤓 Glasses Virtual Try-On 🕶️👓</h1>")
    with gr.Column(elem_classes=["my-column"]):
        with gr.Group(elem_classes=["my-group"]):
            transform = gr.Dropdown(choices=["cartoon", "edges", "sepia", "negative", "sketch", "blur", "none"],
                                    value="none", label="Select Filter")
            gr.Markdown("Click the Webcam icon to start the camera, and then press the record button to start the virtual try-on.")
            input_img = gr.Image(sources=["webcam"], type="numpy", streaming=True)
            gr.Markdown("Face Shape and Recommended Glass Shape")
            face_shape_output = gr.Textbox(label="Detected Face Shape")
            glass_shape_output = gr.Textbox(label="Recommended Glass Shape")
            next_button = gr.Button("Next Glasses➡️")
            save_button = gr.Button("Save as a Picture📌")

    input_img.stream(webcam_input, [input_img, transform], [input_img, face_shape_output, glass_shape_output], stream_every=0.1)
    with gr.Row():
        next_button.click(change_glasses, [], [])
    with gr.Row():
        save_button.click(save_frame, [input_img], [])

if __name__ == "__main__":
    demo.launch(share=True)