File size: 16,937 Bytes
aea6c92
 
 
 
 
acd6b6a
215339c
aea6c92
 
 
 
 
acd6b6a
 
 
7aff7cc
aea6c92
 
59fe7ab
 
 
 
 
 
 
aea6c92
 
 
 
 
 
 
 
7aff7cc
58a86d0
 
7aff7cc
 
58a86d0
 
7aff7cc
 
 
 
 
 
 
92727b3
 
 
 
 
 
 
 
 
aea6c92
 
 
 
8d61727
aea6c92
8d61727
 
 
59fe7ab
 
 
 
aea6c92
 
5ed34fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aff7cc
58a86d0
aea6c92
58a86d0
29cb19e
aea6c92
58a86d0
aea6c92
 
29cb19e
acd6b6a
 
 
7aff7cc
92727b3
acd6b6a
aea6c92
 
7aff7cc
 
29cb19e
 
cf85ac5
 
 
29cb19e
74def1e
 
 
35c6cce
 
aea6c92
74def1e
 
22360ca
7aff7cc
29cb19e
22360ca
 
aea6c92
29cb19e
 
aea6c92
 
74def1e
aea6c92
 
7aff7cc
acd6b6a
58a86d0
 
 
92727b3
acd6b6a
92727b3
aea6c92
d04b2ef
 
 
 
58a86d0
d04b2ef
58a86d0
 
d04b2ef
 
58a86d0
d04b2ef
 
 
 
 
 
 
58a86d0
 
d04b2ef
 
58a86d0
 
d04b2ef
 
 
 
4aebdd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d04b2ef
 
 
215339c
 
 
 
 
 
772889c
 
 
 
 
7d9595b
772889c
92a73ad
 
7d9595b
ccf40ad
5ed34fb
58a86d0
5ed34fb
 
 
 
92727b3
aea6c92
27ea583
03ede8d
52be6f8
 
d04b2ef
 
03ede8d
 
 
 
 
 
 
 
 
 
 
 
de3be89
d04b2ef
52be6f8
03ede8d
 
 
 
 
 
 
52be6f8
03ede8d
 
 
b0e8602
03ede8d
5ed34fb
03ede8d
215339c
772889c
215339c
b0e8602
ea59c84
 
7aff7cc
aea6c92
59fe7ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import cv2
import cvzone
import numpy as np
import os
import gradio as gr
import mediapipe as mp
from datetime import datetime

# Load the YuNet model
model_path = 'face_detection_yunet_2023mar.onnx'
face_detector = cv2.FaceDetectorYN.create(model_path, "", (320, 320))

# Initialize MediaPipe Face Mesh
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)

# Initialize the glass number
num = 1
overlay_bgr = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED)
# Split the channels
b, g, r, a = cv2.split(overlay_bgr)
# Merge back in RGB order
overlay_rgb = cv2.merge((r, g, b, a))
# Use overlay_rgb in your process_frame function
overlay = overlay_rgb

# Count glasses files
def count_files_in_directory(directory):
    file_count = 0
    for root, dirs, files in os.walk(directory):
        file_count += len(files)
    return file_count

# Determine face shape
def determine_face_shape_3d(landmarks):
    # Calculate 3D distances
    jaw_width = np.linalg.norm(landmarks[0] - landmarks[16])
    face_height = np.linalg.norm(landmarks[8] - landmarks[27])

    # Determine face shape based on 3D proportions
    if jaw_width / face_height > 1.5:
        return "Round"
    elif jaw_width / face_height < 1.2:
        return "Oval"
    else:
        return "Square"

# Recommend glass shape based on face shape
def recommend_glass_shape(face_shape):
    if face_shape == "Round":
        return "Square"
    elif face_shape == "Oval":
        return "Round"
    else:
        return "Square"

directory_path = 'glasses'
total_glass_num = count_files_in_directory(directory_path)

# Change glasses
def change_glasses():
    global num, overlay
    num += 1
    if num > total_glass_num:
        num = 1
    overlay_bgr = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED)
    b, g, r, a = cv2.split(overlay_bgr)
    overlay_rgb = cv2.merge((r, g, b, a))
    overlay = overlay_rgb
    return overlay

def change_lip_color(frame, color_name='none'):
    # Define a mapping from color names to BGR values
    color_map = {
    'classic_red': (255, 0, 0),    # Classic red
    'deep_red': (139, 0, 0),       # Deep red
    'cherry_red': (205, 0, 0),     # Cherry red
    'rose_red': (204, 102, 0),     # Rose red
    'wine_red': (128, 0, 0),       # Wine red
    'brick_red': (128, 64, 0),     # Brick red
    'coral_red': (255, 128, 0),    # Coral red
    'berry_red': (153, 0, 0),      # Berry red
    'ruby_red': (255, 17, 0),      # Ruby red
    'crimson_red': (220, 20, 60),  # Crimson red
}

    # Get the BGR color from the color name
    color = color_map.get(color_name, None)

    # If 'none' is selected, return the original frame
    if color is None:
        return frame

    # Convert to RGB for processing
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    results = face_mesh.process(frame_rgb)

    if results.multi_face_landmarks:
        for face_landmarks in results.multi_face_landmarks:
           # Define the region for the upper lip using landmark indices
            upper_lip_region = np.array([
                (face_landmarks.landmark[61].x * frame.shape[1], face_landmarks.landmark[61].y * frame.shape[0]),
                (face_landmarks.landmark[185].x * frame.shape[1], face_landmarks.landmark[185].y * frame.shape[0]),
                (face_landmarks.landmark[40].x * frame.shape[1], face_landmarks.landmark[40].y * frame.shape[0]),
                (face_landmarks.landmark[39].x * frame.shape[1], face_landmarks.landmark[39].y * frame.shape[0]),
                (face_landmarks.landmark[37].x * frame.shape[1], face_landmarks.landmark[37].y * frame.shape[0]),
                (face_landmarks.landmark[0].x * frame.shape[1], face_landmarks.landmark[0].y * frame.shape[0]),
                (face_landmarks.landmark[267].x * frame.shape[1], face_landmarks.landmark[267].y * frame.shape[0]),
                (face_landmarks.landmark[269].x * frame.shape[1], face_landmarks.landmark[269].y * frame.shape[0]),
                (face_landmarks.landmark[270].x * frame.shape[1], face_landmarks.landmark[270].y * frame.shape[0]),
                (face_landmarks.landmark[409].x * frame.shape[1], face_landmarks.landmark[409].y * frame.shape[0]),
                (face_landmarks.landmark[291].x * frame.shape[1], face_landmarks.landmark[291].y * frame.shape[0]),
                (face_landmarks.landmark[61].x * frame.shape[1], face_landmarks.landmark[61].y * frame.shape[0])
            ], np.int32)

            # Define the region for the lower lip using landmark indices
            lower_lip_region = np.array([
                (face_landmarks.landmark[61].x * frame.shape[1], face_landmarks.landmark[61].y * frame.shape[0]),
                (face_landmarks.landmark[146].x * frame.shape[1], face_landmarks.landmark[146].y * frame.shape[0]),
                (face_landmarks.landmark[91].x * frame.shape[1], face_landmarks.landmark[91].y * frame.shape[0]),
                (face_landmarks.landmark[181].x * frame.shape[1], face_landmarks.landmark[181].y * frame.shape[0]),
                (face_landmarks.landmark[84].x * frame.shape[1], face_landmarks.landmark[84].y * frame.shape[0]),
                (face_landmarks.landmark[17].x * frame.shape[1], face_landmarks.landmark[17].y * frame.shape[0]),
                (face_landmarks.landmark[314].x * frame.shape[1], face_landmarks.landmark[314].y * frame.shape[0]),
                (face_landmarks.landmark[405].x * frame.shape[1], face_landmarks.landmark[405].y * frame.shape[0]),
                (face_landmarks.landmark[321].x * frame.shape[1], face_landmarks.landmark[321].y * frame.shape[0]),
                (face_landmarks.landmark[375].x * frame.shape[1], face_landmarks.landmark[375].y * frame.shape[0]),
                (face_landmarks.landmark[291].x * frame.shape[1], face_landmarks.landmark[291].y * frame.shape[0]),
                (face_landmarks.landmark[61].x * frame.shape[1], face_landmarks.landmark[61].y * frame.shape[0])
            ], np.int32)

            lip_region = np.concatenate((upper_lip_region, lower_lip_region), axis=0)

            # Define the region for the teeth using landmark indices
            teeth_region = np.array([
                (face_landmarks.landmark[78].x * frame.shape[1], face_landmarks.landmark[78].y * frame.shape[0]),
                (face_landmarks.landmark[95].x * frame.shape[1], face_landmarks.landmark[95].y * frame.shape[0]),
                (face_landmarks.landmark[88].x * frame.shape[1], face_landmarks.landmark[88].y * frame.shape[0]),
                (face_landmarks.landmark[178].x * frame.shape[1], face_landmarks.landmark[178].y * frame.shape[0]),
                (face_landmarks.landmark[87].x * frame.shape[1], face_landmarks.landmark[87].y * frame.shape[0]),
                (face_landmarks.landmark[14].x * frame.shape[1], face_landmarks.landmark[14].y * frame.shape[0]),
                (face_landmarks.landmark[317].x * frame.shape[1], face_landmarks.landmark[317].y * frame.shape[0]),
                (face_landmarks.landmark[402].x * frame.shape[1], face_landmarks.landmark[402].y * frame.shape[0]),
                (face_landmarks.landmark[318].x * frame.shape[1], face_landmarks.landmark[318].y * frame.shape[0]),
                (face_landmarks.landmark[324].x * frame.shape[1], face_landmarks.landmark[324].y * frame.shape[0]),
                (face_landmarks.landmark[308].x * frame.shape[1], face_landmarks.landmark[308].y * frame.shape[0]),
                (face_landmarks.landmark[78].x * frame.shape[1], face_landmarks.landmark[78].y * frame.shape[0])
            ], np.int32)

            # Create a mask for the lip region
            lip_mask = np.zeros(frame.shape[:2], dtype=np.uint8)
            cv2.fillPoly(lip_mask, [lip_region], 255)

            # Create a mask for the teeth region
            teeth_mask = np.zeros(frame.shape[:2], dtype=np.uint8)
            cv2.fillPoly(teeth_mask, [teeth_region], 255)

            # Subtract the teeth mask from the lip mask
            final_mask = cv2.subtract(lip_mask, teeth_mask)

            # Create a colored lip image
            colored_lips = np.zeros_like(frame)
            colored_lips[:] = color

            # Apply the colored lips only to the lip region
            lips_colored = cv2.bitwise_and(colored_lips, colored_lips, mask=final_mask)

            # Combine the original frame with the colored lips
            frame = cv2.bitwise_and(frame, frame, mask=cv2.bitwise_not(final_mask))
            frame = cv2.add(frame, lips_colored)

    return frame

# Process frame for overlay and face shape detection
def process_frame_3d(frame):
    global overlay

    frame = np.array(frame, copy=True)
    height, width = frame.shape[:2]

    face_detector.setInputSize((width, height))
    _, faces = face_detector.detect(frame)

    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    results = face_mesh.process(frame_rgb)

    face_shape = "Unknown"
    glass_shape = "Unknown"
    if faces is not None and results.multi_face_landmarks:
        for face in faces:
            x, y, w, h = face[:4].astype(int)
            face_landmarks = face[4:14].reshape(5, 2).astype(int)

            left_eye_x, left_eye_y = face_landmarks[0].astype(int)
            right_eye_x, right_eye_y = face_landmarks[1].astype(int)

            eye_center_x = (left_eye_x + right_eye_x) // 2
            eye_center_y = (left_eye_y + right_eye_y) // 2

            delta_x = right_eye_x - left_eye_x
            delta_y = right_eye_y - left_eye_y
            angle = np.degrees(np.arctan2(delta_y, delta_x))
            angle = -angle

            overlay_resize = cv2.resize(overlay, (int(w * 1.15), int(h * 0.8)))
            overlay_center = (overlay_resize.shape[1] // 2, overlay_resize.shape[0] // 2)
            rotation_matrix = cv2.getRotationMatrix2D(overlay_center, angle, 1.0)
            overlay_rotated = cv2.warpAffine(
                overlay_resize, rotation_matrix,
                (overlay_resize.shape[1], overlay_resize.shape[0]),
                flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0, 0)
            )

            overlay_x = eye_center_x - overlay_rotated.shape[1] // 2
            overlay_y = eye_center_y - overlay_rotated.shape[0] // 2

            try:
                frame = cvzone.overlayPNG(frame, overlay_rotated, [overlay_x, overlay_y])
            except Exception as e:
                print(f"Error overlaying glasses: {e}")

            for face_landmarks_mp in results.multi_face_landmarks:
                # Convert landmarks to 3D coordinates
                landmarks = np.array([(lm.x * frame.shape[1], lm.y * frame.shape[0], lm.z * frame.shape[1]) for lm in face_landmarks_mp.landmark])
                face_shape = determine_face_shape_3d(landmarks)
                glass_shape = recommend_glass_shape(face_shape)

    return frame, face_shape, glass_shape

# Transform function
def transform_cv2(frame, transform):
    if transform == "cartoon":
        # prepare color
        img_color = cv2.pyrDown(cv2.pyrDown(frame)) # Reduce the resolution
        for _ in range(6):
            img_color = cv2.bilateralFilter(img_color, 9, 9, 7) # Smoothen the image while preserving the edges
        img_color = cv2.pyrUp(cv2.pyrUp(img_color)) # Scale back to the original resolution

        # prepare edges
        img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) # Convert to grayscale
        img_edges = cv2.adaptiveThreshold(
            cv2.medianBlur(img_edges, 7),
            255,
            cv2.ADAPTIVE_THRESH_MEAN_C,
            cv2.THRESH_BINARY,
            9,
            2,
        ) # Apply adaptive thresholding to get the edges
        img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) # Convert back to color
        # combine color and edges
        img = cv2.bitwise_and(img_color, img_edges)
        return img # Combine the color and edges
    
    elif transform == "edges":
        # perform edge detection
        img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
        return img
    
    elif transform == "sepia":
        # apply sepia effect
        kernel = np.array([[0.272, 0.534, 0.131],
                           [0.349, 0.686, 0.168],
                           [0.393, 0.769, 0.189]])
        img = cv2.transform(frame, kernel)
        img = np.clip(img, 0, 255)  # ensure values are within byte range
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        return img_rgb

    elif transform == "negative":
        # apply negative effect
        img = cv2.bitwise_not(frame)
        return img

    elif transform == "sketch":
        # apply sketch effect
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        inv_gray = cv2.bitwise_not(gray)
        blur = cv2.GaussianBlur(inv_gray, (21, 21), 0)
        inv_blur = cv2.bitwise_not(blur)
        img = cv2.divide(gray, inv_blur, scale=256.0)
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        return img

    elif transform == "blur":
        # apply blur effect
        img = cv2.GaussianBlur(frame, (15, 15), 0)
        return img

    else:
        return frame
    
def refresh_interface():
    # Reset the image to an empty state or a default image
    input_img.update(value=None)
    # Return a message indicating the interface has been refreshed
    return "Interface refreshed!"

def save_frame(frame):
       # Convert frame to RGB
       frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
       # Create a unique filename using the current timestamp
       filename = f"saved_frame_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
       # Save the frame to a temporary file
       cv2.imwrite(filename, frame)
    #    # Refresh the interface
    #    refresh_interface()
       return filename

def webcam_input(frame, transform, lip_color):
    frame, face_shape, glass_shape = process_frame_3d(frame)
    if transform != "none" and lip_color == "none":
        frame = transform_cv2(frame, transform)
    elif lip_color != "none" and transform == "none":
        frame = change_lip_color(frame, lip_color)
    return frame, face_shape, glass_shape


# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue")) as demo:
    gr.Markdown("<h1 style='text-align: center; font-weight: bold;'>🤓 Glasses Virtual Try-On 🕶️👓</h1>")
    with gr.Column(elem_classes=["my-column"]):
        with gr.Group(elem_classes=["my-group"]):
            gr.Markdown("<p style='text-align: left; color: purple;'>🟣You can only apply one filter at a time, either the transform filter or the lip color filter.</p>")
            # Two filters: transform and lip color
            with gr.Row():
                transform = gr.Dropdown(
                    choices=["cartoon", "edges", "sepia", "negative", "sketch", "blur", "none"],
                    value="none", label="Select Filter"
                )

                lip_color = gr.Dropdown(
                    choices=["classic_red", "deep_red", "cherry_red", "rose_red", "wine_red", "brick_red", "coral_red", "berry_red", "ruby_red", "crimson_red", "none"],
                    value="none", label="Select Lip Color"
                )
            gr.Markdown("<p style='text-align: left; font-weight: bold; color: purple;'>🟣Click the Webcam icon to start the camera, and then press the record button to start the virtual try-on. If the glasses overlay isn’t showing, try moving further away from the camera.</p>")
            input_img = gr.Image(sources=["webcam"], type="numpy", streaming=True)
            next_button = gr.Button("Next Glasses➡️")
            gr.Markdown("<p style='text-align: left; color: purple;'>🟣Face Shape and Recommended Glass Shape</p>")
            
            # Face shape and recommended glass shape
            with gr.Row():
                face_shape_output = gr.Textbox(label="Detected Face Shape")
                glass_shape_output = gr.Textbox(label="Recommended Glass Shape")

            save_button = gr.Button("Save as a Picture📌")

            gr.Markdown("<p style='text-align: left; color: red;'>‼️Warning: Refresh the page after saving the picture to use the virtual try-on again.</p>")

            download_link = gr.File(label="Download Saved Picture")

    input_img.stream(webcam_input, [input_img, transform, lip_color], [input_img, face_shape_output, glass_shape_output], stream_every=0.1)

    with gr.Row():
        next_button.click(change_glasses, [], [])
    with gr.Row():
        save_button.click(save_frame, [input_img], [download_link])
    gr.Markdown("**Reminder:** All glasses images are screenshots from Goodr, segmented using glass_segmentation_helper.py, and then manually saved to the “glasses” folder for the try-on feature.")


if __name__ == "__main__":
    demo.launch(share=True)