Spaces:
Sleeping
Sleeping
from PIL import Image | |
import matplotlib.pyplot as plt | |
import torch | |
from torchvision import transforms | |
from transformers import AutoModelForImageSegmentation | |
# Load the model | |
model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True) | |
torch.set_float32_matmul_precision('high') | |
model.eval() | |
# Data settings | |
image_size = (1024, 1024) | |
transform_image = transforms.Compose([ | |
transforms.Resize(image_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
# Get the image file path from the user | |
input_image_path = input("Please enter the file path of the image: ") | |
# Open and convert the image | |
try: | |
im = Image.open(input_image_path) | |
rgb_im = im.convert('RGB') | |
except FileNotFoundError: | |
print(f"Error: The file at {input_image_path} was not found.") | |
exit() | |
# Transform the image | |
input_images = transform_image(rgb_im).unsqueeze(0) | |
# Prediction | |
with torch.no_grad(): | |
preds = model(input_images)[-1].sigmoid().cpu() | |
# Process the prediction | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(rgb_im.size) | |
rgb_im.putalpha(mask) | |
# Save the result | |
output_image_path = "no_bg_image.png" | |
rgb_im.save(output_image_path) | |
print(f"Image with background removed saved as {output_image_path}") | |