Spaces:
Runtime error
Runtime error
import pandas as pd | |
import gradio as gr | |
print(gr.__version__) | |
import torch | |
import torchaudio | |
df= pd.read_csv('native_words_subset.csv') | |
torch._C._jit_override_can_fuse_on_cpu(False) | |
torch._C._jit_override_can_fuse_on_gpu(False) | |
torch._C._jit_set_texpr_fuser_enabled(False) | |
torch._C._jit_set_nvfuser_enabled(False) | |
loader = torch.jit.load("audio_loader.pt") | |
model = torch.jit.load('QuartzNet_thunderspeech_3.pt').eval() | |
vocab = model.text_transform.vocab.itos | |
vocab[-1] = '' | |
def convert_probs(probs): | |
ids = probs.argmax(1)[0] | |
s = [] | |
if vocab[ids[0]]: s.append(vocab[ids[0]]) | |
for i in range(1,len(ids)): | |
if ids[i-1] != ids[i]: | |
new = vocab[ids[i]] | |
if new: s.append(new) | |
#return '.'.join(s) | |
return s | |
def predict(path): | |
audio = loader(path) | |
probs = model(audio, torch.tensor(audio.shape[0] * [audio.shape[-1]], device=audio.device))[0] | |
return convert_probs(probs) | |
from difflib import SequenceMatcher | |
def similar(a, b): | |
return SequenceMatcher(None, a, b).ratio() | |
def compare(chosen_word, path): | |
etalon = list(df.loc[df['replica'] == chosen_word, 'transcription'].values[0].split('.')) | |
user = predict(path) | |
coeff = similar(user, etalon) | |
return f'Коэффицент схожести вашего произношения и произношения носителя {coeff}. Чем ближе коэффицент к единице, тем лучше.' + '\nВаше произношение: [' + ''.join(user) + ']\n Произноешение носителя: [' + ''.join(etalon) + ']' | |
word_choice = gr.inputs.Dropdown(list(df['replica'].unique()), label="Choose a word") | |
gr.Interface(fn=compare, inputs=[word_choice, gr.inputs.Audio(source='microphone', type='filepath', optional=True)], outputs= 'text').launch(debug=True) |