Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv, find_dotenv
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
import streamlit as st
|
5 |
+
import torch
|
6 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
import soundfile as sf
|
9 |
+
|
10 |
+
# print(torch.cuda.is_available())
|
11 |
+
|
12 |
+
load_dotenv(find_dotenv())
|
13 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("token")
|
14 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
15 |
+
|
16 |
+
def img2text(path):
|
17 |
+
|
18 |
+
API_URL = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
|
19 |
+
|
20 |
+
def query(filename):
|
21 |
+
with open(filename, "rb") as f:
|
22 |
+
data = f.read()
|
23 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
24 |
+
return response.json()
|
25 |
+
|
26 |
+
output = query(path)[0]['generated_text']
|
27 |
+
|
28 |
+
print(output)
|
29 |
+
return output
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def generate_story(scene):
|
34 |
+
template = f'''
|
35 |
+
You are a poet;
|
36 |
+
You can generate a poem from a simple narrative, understand the theme, and use proper rhyming words.
|
37 |
+
The poem should not be shorter than 16 lines and not be longer than 20 lines.
|
38 |
+
|
39 |
+
Scenario: {scene}
|
40 |
+
|
41 |
+
Write a poem based on the provided scenario.
|
42 |
+
'''
|
43 |
+
|
44 |
+
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
45 |
+
|
46 |
+
def query(payload):
|
47 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
48 |
+
return response.json()
|
49 |
+
|
50 |
+
story = query({
|
51 |
+
"inputs": template,
|
52 |
+
})
|
53 |
+
|
54 |
+
story = str(story[0]['generated_text']).split("\n")
|
55 |
+
|
56 |
+
story = story[12:]
|
57 |
+
s = ""
|
58 |
+
for i in story:
|
59 |
+
s += (i+"\n")
|
60 |
+
|
61 |
+
story = s
|
62 |
+
del(s)
|
63 |
+
|
64 |
+
print(story)
|
65 |
+
return story
|
66 |
+
|
67 |
+
def gen_audio(message):
|
68 |
+
|
69 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
70 |
+
|
71 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler_tts_mini_v0.1").to(device)
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler_tts_mini_v0.1")
|
73 |
+
|
74 |
+
prompt = message
|
75 |
+
description = "A female speaker with a slightly low-pitched, quite expressive voice delivers her words at a normal pace in a poetic manner with proper pauses while speaking inside a confined space with very clear audio."
|
76 |
+
|
77 |
+
input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
|
78 |
+
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
79 |
+
|
80 |
+
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
81 |
+
audio_arr = generation.cpu().numpy().squeeze()
|
82 |
+
sf.write("audio.wav", audio_arr, model.config.sampling_rate)
|
83 |
+
|
84 |
+
|
85 |
+
def main():
|
86 |
+
st.set_page_config(page_title="img 2 poem", page_icon="🤖")
|
87 |
+
st.header("Trun image into poem")
|
88 |
+
uploaded_file = st.file_uploader("choose an image.....", type=["png","jpg","jpeg","svg"])
|
89 |
+
|
90 |
+
if uploaded_file is not None:
|
91 |
+
print(uploaded_file)
|
92 |
+
bytes_data = uploaded_file.getvalue()
|
93 |
+
print(bytes_data)
|
94 |
+
with open(uploaded_file.name, "wb") as file:
|
95 |
+
file.write(bytes_data)
|
96 |
+
|
97 |
+
st.image(uploaded_file, caption="Uploaded Image")
|
98 |
+
|
99 |
+
scenario = img2text(uploaded_file.name)
|
100 |
+
story = generate_story(scenario)
|
101 |
+
gen_audio(story)
|
102 |
+
|
103 |
+
with st.expander("Scenario"):
|
104 |
+
st.write(scenario)
|
105 |
+
with st.expander("Poem"):
|
106 |
+
st.write(story)
|
107 |
+
|
108 |
+
st.audio("audio.wav")
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
# main()
|
112 |
+
scene = img2text("couples.jpg")
|
113 |
+
story = generate_story(scene)
|
114 |
+
# gen_audio(story)
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|