Spaces:
Runtime error
Runtime error
File size: 885 Bytes
34d67cb 26e6a51 e5a5a0d 26e6a51 e5a5a0d 34d67cb 26e6a51 34d67cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
import os
# Authenticate using token
login(token=os.getenv('hf_token'))
# Load the model and tokenizer
model_name = "mistralai/Mistral-Nemo-Instruct-2407"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True)
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=150, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Define the Gradio interface
def chat_function(user_input):
return generate_response(user_input)
# Launch the Gradio app
gr.ChatInterface(fn=chat_function, title="Mistral Chatbot").launch(share=True)
|