mistral-ai-chat / app.py
Smartlizardpy's picture
Create app.py
34d67cb verified
raw
history blame
736 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model_name = "mistralai/Mistral-Nemo-Instruct-2407"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=150, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Define the Gradio interface
def chat_function(user_input):
return generate_response(user_input)
# Launch the Gradio app
gr.ChatInterface(fn=chat_function, title="Mistral Chatbot").launch(share=True)