Spaces:
Sleeping
Sleeping
import streamlit as st | |
from ultralytics import YOLO | |
import numpy as np | |
import cv2 | |
# Load models | |
model = YOLO("best-3.pt") # load a custom model for segmentation (protection zone) | |
model2 = YOLO('yolo11s.pt') # load a second model for object detection | |
# Streamlit app title | |
st.title("Protection Zone and Object Detection") | |
# Upload image | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Read the image | |
image = uploaded_file.read() | |
image_np = np.frombuffer(image, np.uint8) | |
image_cv = cv2.imdecode(image_np, cv2.IMREAD_COLOR) | |
# Predict protection zone with the first model | |
segment_results = model(image_cv) # predict segments | |
protection_mask = np.zeros(image_cv.shape[:2], dtype=np.uint8) # create an empty mask | |
for result in segment_results: | |
if result.masks is not None: | |
for segment in result.masks.data: | |
# Convert segment to numpy array and ensure it's the right shape and type | |
segment_array = segment.cpu().numpy().astype(np.uint8) | |
segment_array = cv2.resize(segment_array, (image_cv.shape[1], image_cv.shape[0])) | |
protection_mask = cv2.bitwise_or(protection_mask, segment_array * 255) | |
# Create a copy of the original image to draw on | |
output_image = image_cv.copy() | |
# Overlay the protection zone mask on the output image | |
protection_overlay = cv2.applyColorMap(protection_mask, cv2.COLORMAP_COOL) | |
output_image = cv2.addWeighted(output_image, 0.7, protection_overlay, 0.3, 0) | |
# Predict objects with the second model | |
object_results = model2(image_cv) # predict objects using model2 | |
for result in object_results: | |
boxes = result.boxes.xyxy.cpu().numpy().astype(int) | |
for box in boxes: | |
x1, y1, x2, y2 = box | |
# Check if the object is within the protection zone | |
object_mask = np.zeros(image_cv.shape[:2], dtype=np.uint8) | |
object_mask[y1:y2, x1:x2] = 1 # create a mask for the object | |
# Check overlap | |
overlap = cv2.bitwise_and(protection_mask, object_mask) | |
color = (0, 0, 255) if np.sum(overlap) > 0 else (0, 255, 0) # red if in zone, green if outside | |
# Draw bounding box around the object | |
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2) | |
# Display the final image | |
st.image(output_image, caption="Protection Zone and Detected Objects", channels="BGR") | |
else: | |
st.write("Please upload an image to process.") |