railway_track2 / app.py
Sompote's picture
Upload 4 files
9f59317 verified
raw
history blame
2.6 kB
import streamlit as st
from ultralytics import YOLO
import numpy as np
import cv2
# Load models
model = YOLO("best-3.pt") # load a custom model for segmentation (protection zone)
model2 = YOLO('yolo11s.pt') # load a second model for object detection
# Streamlit app title
st.title("Protection Zone and Object Detection")
# Upload image
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Read the image
image = uploaded_file.read()
image_np = np.frombuffer(image, np.uint8)
image_cv = cv2.imdecode(image_np, cv2.IMREAD_COLOR)
# Predict protection zone with the first model
segment_results = model(image_cv) # predict segments
protection_mask = np.zeros(image_cv.shape[:2], dtype=np.uint8) # create an empty mask
for result in segment_results:
if result.masks is not None:
for segment in result.masks.data:
# Convert segment to numpy array and ensure it's the right shape and type
segment_array = segment.cpu().numpy().astype(np.uint8)
segment_array = cv2.resize(segment_array, (image_cv.shape[1], image_cv.shape[0]))
protection_mask = cv2.bitwise_or(protection_mask, segment_array * 255)
# Create a copy of the original image to draw on
output_image = image_cv.copy()
# Overlay the protection zone mask on the output image
protection_overlay = cv2.applyColorMap(protection_mask, cv2.COLORMAP_COOL)
output_image = cv2.addWeighted(output_image, 0.7, protection_overlay, 0.3, 0)
# Predict objects with the second model
object_results = model2(image_cv) # predict objects using model2
for result in object_results:
boxes = result.boxes.xyxy.cpu().numpy().astype(int)
for box in boxes:
x1, y1, x2, y2 = box
# Check if the object is within the protection zone
object_mask = np.zeros(image_cv.shape[:2], dtype=np.uint8)
object_mask[y1:y2, x1:x2] = 1 # create a mask for the object
# Check overlap
overlap = cv2.bitwise_and(protection_mask, object_mask)
color = (0, 0, 255) if np.sum(overlap) > 0 else (0, 255, 0) # red if in zone, green if outside
# Draw bounding box around the object
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
# Display the final image
st.image(output_image, caption="Protection Zone and Detected Objects", channels="BGR")
else:
st.write("Please upload an image to process.")