File size: 14,018 Bytes
832c977 a0bafb1 832c977 a0bafb1 832c977 a0bafb1 832c977 a0bafb1 832c977 5ad51d0 832c977 a0bafb1 832c977 bed671c a0bafb1 06bf94f bed671c 832c977 a0bafb1 832c977 a0bafb1 832c977 a0bafb1 832c977 a0bafb1 832c977 a0bafb1 832c977 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import sys
from subprocess import check_call
import tempfile
from os.path import basename, splitext, join
from io import BytesIO
import numpy as np
from scipy.spatial import KDTree
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import to_tensor, to_pil_image
from einops import rearrange
import gradio as gr
from huggingface_hub import hf_hub_download
from extern.ZoeDepth.zoedepth.utils.misc import colorize
from gradio_model3dgscamera import Model3DGSCamera
def download_models():
models = [
{
'repo': 'stabilityai/sd-vae-ft-mse',
'sub': None,
'dst': 'checkpoints/sd-vae-ft-mse',
'files': ['config.json', 'diffusion_pytorch_model.safetensors'],
'token': None
},
{
'repo': 'lambdalabs/sd-image-variations-diffusers',
'sub': 'image_encoder',
'dst': 'checkpoints',
'files': ['config.json', 'pytorch_model.bin'],
'token': None
},
{
'repo': 'Sony/genwarp',
'sub': 'multi1',
'dst': 'checkpoints',
'files': ['config.json', 'denoising_unet.pth', 'pose_guider.pth', 'reference_unet.pth'],
'token': None
}
]
for model in models:
for file in model['files']:
hf_hub_download(
repo_id=model['repo'],
subfolder=model['sub'],
filename=file,
local_dir=model['dst'],
token=model['token']
)
# Setup.
download_models()
mde = torch.hub.load(
'./extern/ZoeDepth',
'ZoeD_N',
source='local',
pretrained=True,
trust_repo=True
)
import spaces
check_call([
sys.executable, '-m', 'pip', 'install',
'extern/splatting-0.0.1-py3-none-any.whl'
])
from genwarp import GenWarp
from genwarp.ops import (
camera_lookat, get_projection_matrix, get_viewport_matrix
)
# GenWarp
genwarp_cfg = dict(
pretrained_model_path='checkpoints',
checkpoint_name='multi1',
half_precision_weights=True
)
genwarp_nvs = GenWarp(cfg=genwarp_cfg, device='cpu')
# Fixed parameters.
IMAGE_SIZE = 512
NEAR, FAR = 0.01, 100
FOVY = np.deg2rad(55)
PROJ_MTX = get_projection_matrix(
fovy=torch.ones(1) * FOVY,
aspect_wh=1.,
near=NEAR,
far=FAR
)
VIEW_MTX = camera_lookat(
torch.tensor([[0., 0., 0.]]),
torch.tensor([[0., 0., 1.]]),
torch.tensor([[0., -1., 0.]])
)
VIEWPORT_MTX = get_viewport_matrix(
IMAGE_SIZE, IMAGE_SIZE,
batch_size=1
)
# Crop the image to the shorter side.
def crop(img: Image) -> Image:
W, H = img.size
if W < H:
left, right = 0, W
top, bottom = np.ceil((H - W) / 2.), np.floor((H - W) / 2.) + W
else:
left, right = np.ceil((W - H) / 2.), np.floor((W - H) / 2.) + H
top, bottom = 0, H
img = img.crop((left, top, right, bottom))
img = img.resize((IMAGE_SIZE, IMAGE_SIZE))
return img
def save_as_splat(
filepath: str,
xyz: np.ndarray,
rgb: np.ndarray
):
# To gaussian splat
inv_sigmoid = lambda x: np.log(x / (1 - x))
dist2 = np.clip(calc_dist2(xyz), a_min=0.0000001, a_max=None)
scales = np.repeat(np.log(np.sqrt(dist2))[..., np.newaxis], 3, axis=1)
rots = np.zeros((xyz.shape[0], 4))
rots[:, 0] = 1
opacities = inv_sigmoid(0.1 * np.ones((xyz.shape[0], 1)))
sorted_indices = np.argsort((
-np.exp(np.sum(scales, axis=-1, keepdims=True))
/ (1 + np.exp(-opacities))
).squeeze())
buffer = BytesIO()
for idx in sorted_indices:
position = xyz[idx]
scale = np.exp(scales[idx]).astype(np.float32)
rot = rots[idx].astype(np.float32)
color = np.concatenate(
(rgb[idx], 1 / (1 + np.exp(-opacities[idx]))),
axis=-1
)
buffer.write(position.tobytes())
buffer.write(scale.tobytes())
buffer.write((color * 255).clip(0, 255).astype(np.uint8).tobytes())
buffer.write(
((rot / np.linalg.norm(rot)) * 128 + 128)
.clip(0, 255)
.astype(np.uint8)
.tobytes()
)
with open(filepath, "wb") as f:
f.write(buffer.getvalue())
def calc_dist2(points: np.ndarray):
dists, _ = KDTree(points).query(points, k=4)
mean_dists = (dists[:, 1:] ** 2).mean(1)
return mean_dists
def unproject(depth):
H, W = depth.shape[2:4]
mean_depth = depth.mean(dim=(2, 3)).squeeze().item()
# Matrices.
viewport_mtx = VIEWPORT_MTX.to(depth)
proj_mtx = PROJ_MTX.to(depth)
view_mtx = VIEW_MTX.to(depth)
scr_mtx = (viewport_mtx @ proj_mtx).to(depth)
grid = torch.stack(torch.meshgrid(
torch.arange(W), torch.arange(H), indexing='xy'), dim=-1
).to(depth)[None] # BHW2
screen = F.pad(grid, (0, 1), 'constant', 0)
screen = F.pad(screen, (0, 1), 'constant', 1)
screen_flat = rearrange(screen, 'b h w c -> b (h w) c')
eye = screen_flat @ torch.linalg.inv_ex(
scr_mtx.float()
)[0].mT.to(depth)
eye = eye * rearrange(depth, 'b c h w -> b (h w) c')
eye[..., 3] = 1
points = eye @ torch.linalg.inv_ex(view_mtx.float())[0].mT.to(depth)
points = points[0, :, :3]
# Translate to the origin.
points[..., 2] -= mean_depth
camera_pos = (0, 0, -mean_depth)
return points, camera_pos
def view_from_rt(position, rotation):
t = np.array(position)
euler = np.array(rotation)
cx = np.cos(euler[0])
sx = np.sin(euler[0])
cy = np.cos(euler[1])
sy = np.sin(euler[1])
cz = np.cos(euler[2])
sz = np.sin(euler[2])
R = np.array([
cy * cz + sy * sx * sz,
-cy * sz + sy * sx * cz,
sy * cx,
cx * sz,
cx * cz,
-sx,
-sy * cz + cy * sx * sz,
sy * sz + cy * sx * cz,
cy * cx
])
view_mtx = np.array([
[R[0], R[1], R[2], 0],
[R[3], R[4], R[5], 0],
[R[6], R[7], R[8], 0],
[
-t[0] * R[0] - t[1] * R[3] - t[2] * R[6],
-t[0] * R[1] - t[1] * R[4] - t[2] * R[7],
-t[0] * R[2] - t[1] * R[5] - t[2] * R[8],
1
]
]).T
B = np.array([
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]
])
return B @ view_mtx
with tempfile.TemporaryDirectory() as tmpdir:
with gr.Blocks(
title='GenWarp Demo',
css='img {display: inline;}'
) as demo:
# Internal states.
image = gr.State()
depth = gr.State()
# Callbacks
@spaces.GPU()
def cb_mde(image_file: str):
# Load an image.
image_pil = crop(Image.open(image_file).convert('RGB'))
image = to_tensor(image_pil)[None].detach()
# Get depth.
depth = mde.cuda().infer(image.cuda()).cpu().detach()
depth_pil = to_pil_image(colorize(depth[0]))
return image_pil, depth_pil, image, depth
@spaces.GPU()
def cb_3d(image_file, image, depth):
# Unproject.
xyz, camera_pos = unproject(depth.cuda())
xyz = xyz.cpu().detach().numpy()
# Save as a splat.
## Output filename.
splat_file = join(
tmpdir, f'./{splitext(basename(image_file))[0]}.splat')
rgb = rearrange(image, 'b c h w -> b (h w) c')[0].numpy()
save_as_splat(splat_file, xyz, rgb)
return splat_file, camera_pos, (0, 0, 0)
@spaces.GPU()
def cb_generate(viewer, image, depth):
if depth is None:
gr.Error('Image and Depth are not set. Try again.')
return None, None
mean_depth = depth.mean(dim=(2, 3)).squeeze().item()
src_view_mtx = camera_lookat(
torch.tensor([[0., 0., -mean_depth]]),
torch.tensor([[0., 0., 0.]]),
torch.tensor([[0., -1., 0.]])
).to(depth)
tar_camera_pos, tar_camera_rot = viewer[1:3]
tar_view_mtx = torch.from_numpy(view_from_rt(
tar_camera_pos, tar_camera_rot
))
rel_view_mtx = (
tar_view_mtx @ torch.linalg.inv(src_view_mtx.double())
).half().cuda()
proj_mtx = PROJ_MTX.half().cuda()
# GenWarp.
renders = genwarp_nvs.to('cuda')(
src_image=image.half().cuda(),
src_depth=depth.half().cuda(),
rel_view_mtx=rel_view_mtx,
src_proj_mtx=proj_mtx,
tar_proj_mtx=proj_mtx
)
warped_pil = to_pil_image(renders['warped'].cpu()[0])
synthesized_pil = to_pil_image(renders['synthesized'].cpu()[0])
return warped_pil, synthesized_pil
def process_example(image_file):
gr.Error('')
image_pil, depth_pil, image, depth = cb_mde(image_file)
viewer = cb_3d(image_file, image, depth)
# Fixed angle for examples.
viewer = (viewer[0], (-2.020, -0.727, -5.236), (-0.132, 0.378, 0.0))
warped_pil, synthsized_pil = cb_generate(
viewer, image, depth
)
return (
image_pil, depth_pil, viewer,
warped_pil, synthsized_pil,
None, None # Clear internal states.
)
# Blocks.
gr.Markdown(
"""
# GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping
[![Project Site](https://img.shields.io/badge/Project-Web-green)](https://genwarp-nvs.github.io/)
[![Spaces](https://img.shields.io/badge/Spaces-Demo-yellow?logo=huggingface)](https://huggingface.co/spaces/Sony/GenWarp)
[![Github](https://img.shields.io/badge/Github-Repo-orange?logo=github)](https://github.com/sony/genwarp/)
[![Models](https://img.shields.io/badge/Models-checkpoints-blue?logo=huggingface)](https://huggingface.co/Sony/genwarp)
[![arXiv](https://img.shields.io/badge/arXiv-2405.17251-red?logo=arxiv)](https://arxiv.org/abs/2405.17251)
## Introduction
This is an official demo for the paper "[GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping](https://genwarp-nvs.github.io/)". Genwarp can generate novel view images from a single input conditioned on camera poses. In this demo, we offer a basic use of inference of the model. For detailed information, please refer to the [paper](https://arxiv.org/abs/2405.17251).
## How to Use
### Try examples
- Examples are in the bottom section of the page
### Upload your own images
1. Upload a reference image to "Reference Input"
2. Move the camera to your desired view in "Unprojected 3DGS" 3D viewer
3. Hit "Generate a novel view" button and check the result
## Tips
- This model is mainly trained for indoor/outdoor scenery. It might not work well for object-centric inputs. For details on training the model, please check our [paper](https://arxiv.org/abs/2405.17251).
- Extremely large camera movement from the input view might cause low performance results due to the unexpected deviation from the training distribution, which is not the scope of this model. Instead, you can feed the generation result for the small camera movement repeatedly and progressively move towards a desired view.
- 3D viewer might take some time to update especially when trying different images back to back. Wait until it fully updates to the new image.
"""
)
file = gr.File(label='Reference Input', file_types=['image'])
with gr.Row():
image_widget = gr.Image(
label='Reference View', type='filepath',
interactive=False
)
depth_widget = gr.Image(label='Estimated Depth', type='pil')
viewer = Model3DGSCamera(
label = 'Unprojected 3DGS',
width=IMAGE_SIZE,
height=IMAGE_SIZE,
camera_width=IMAGE_SIZE,
camera_height=IMAGE_SIZE,
camera_fx=IMAGE_SIZE / (np.tan(FOVY / 2.)) / 2.,
camera_fy=IMAGE_SIZE / (np.tan(FOVY / 2.)) / 2.,
camera_near=NEAR,
camera_far=FAR
)
button = gr.Button('Generate a novel view', size='lg', variant='primary')
with gr.Row():
warped_widget = gr.Image(
label='Warped Image', type='pil', interactive=False
)
gen_widget = gr.Image(
label='Generated View', type='pil', interactive=False
)
examples = gr.Examples(
examples=[
'./assets/pexels-heyho-5998120_19mm.jpg',
'./assets/pexels-itsterrymag-12639296_24mm.jpg'
],
fn=process_example,
inputs=file,
outputs=[image_widget, depth_widget, viewer,
warped_widget, gen_widget,
image, depth]
)
# Events
file.upload(
fn=cb_mde,
inputs=file,
outputs=[image_widget, depth_widget, image, depth]
).success(
fn=cb_3d,
inputs=[image_widget, image, depth],
outputs=viewer
)
button.click(
fn=cb_generate,
inputs=[viewer, image, depth],
outputs=[warped_widget, gen_widget]
)
# To re-calculate the uncached depth for examples in background.
examples.load_input_event.success(
fn=lambda x: cb_mde(x)[2:4],
inputs=file,
outputs=[image, depth]
)
if __name__ == '__main__':
demo.launch()
|