Blackeyes0u0 commited on
Commit
b019de7
·
1 Parent(s): f3cb8c4

app update

Browse files
Files changed (2) hide show
  1. app.py +129 -5
  2. requirements.txt +17 -0
app.py CHANGED
@@ -1,9 +1,133 @@
1
- #app.py
2
 
3
  import gradio as gr
 
 
 
 
 
 
 
 
4
 
5
- def greet(name):
6
- return "Hello " + name + "!!"
7
 
8
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
9
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  import gradio as gr
3
+ import clip,torch
4
+ import requests
5
+ from PIL import Image
6
+ import numpy as np
7
+ import torch
8
+ import torch.nn as nn
9
+ from io import BytesIO
10
+ import urllib.request
11
 
12
+ # https://hhp-item-resource.s3.ap-northeast-2.amazonaws.com/magazine-resource/magazine/20221017154717/jin._s2.png
13
+ # girl bag skirt eye beauty pretty
14
 
15
+ from selenium import webdriver
16
+ from selenium.webdriver.common.by import By
17
+
18
+
19
+ def test2():
20
+ driver = webdriver.Chrome() #웹드라이버가 있는 경로에서 Chrome을 가져와 실행-> driver변수
21
+
22
+ driver.get('https://www.hiphoper.com/') #driver변수를 이용해 원하는 url 접속
23
+
24
+ imgs = driver.find_elements(By.CSS_SELECTOR,'img.card__image') #css selector를 이용해서 'tag이름.class명'의 순으로 인자를 전달
25
+ result = [] #웹 태그에서 attribute 중 src만 담을 리스트
26
+
27
+ for img in imgs: #모든 이미지들을 탐색
28
+ # print(img.get_attribute('src')) #이미지 주소를 print
29
+ result.append(img.get_attribute('src')) #이미지 src만 모아서 리스트에 저장
30
+
31
+ driver.quit()
32
+
33
+ return result
34
+
35
+
36
+ def similarity(v1,v2,type=0):
37
+ if type ==0:
38
+ v1_norm = np.linalg.norm(v1)
39
+ v2_norm = np.linalg.norm(v2)
40
+
41
+ return np.dot(v1,v2)/(v1_norm*v2_norm)
42
+ else:
43
+ return np.sqrt(np.sum((v1-v2)**2))
44
+
45
+
46
+ def democlip(url ,texts):
47
+
48
+ if url =='':
49
+ print('SYSTEM : alternative url')
50
+ url = 'https://i.pinimg.com/564x/47/b5/5d/47b55de6f168db65cf46d7d1f0451b64.jpg'
51
+ else:
52
+ print('SYSTEM : URL progressed')
53
+
54
+ if texts =='':
55
+ texts ='black desk room girl flower'
56
+ else:
57
+ print('SYSTEM : TEXT progressed')
58
+
59
+ response = requests.get(url)
60
+ image_bytes = response.content
61
+ texts = list(texts.split(' '))
62
+
63
+ """Gets the embedding values for the image."""
64
+ device = "cuda" if torch.cuda.is_available() else "cpu"
65
+ model, preprocess = clip.load("ViT-B/32", device=device)
66
+
67
+ # image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)s
68
+ text_token = clip.tokenize(texts).to(device)
69
+ image = preprocess(Image.open(BytesIO(image_bytes))).unsqueeze(0).to(device)
70
+
71
+ with torch.no_grad():
72
+ image_features = model.encode_image(image)
73
+ text_features = model.encode_text(text_token)
74
+
75
+ logits_per_image, logits_per_text = model(image,text_token)
76
+ probs = logits_per_image.softmax(dim=-1).cpu().numpy()
77
+
78
+ word_dict = {'image':{},'text':{}}
79
+
80
+ ### text
81
+ for i,text in enumerate(texts):
82
+ word_dict['text'][text] = text_features[i].cpu().numpy()
83
+
84
+ ### iamge
85
+ for i,img in enumerate(image):
86
+ word_dict['image'][img] = image_features[i].cpu().numpy()
87
+
88
+ ###################### PCA of embeddings ########################
89
+ ## pca of text
90
+ tu,ts,tv = torch.pca_lowrank(text_features,center=True)
91
+
92
+ text_pca = torch.matmul(text_features,tv[:,:3])
93
+
94
+ ### pca of image
95
+ imgu,imgs,imgv = torch.pca_lowrank(image_features,center=True)
96
+
97
+ image_pca = torch.matmul(image_features,imgv[:,:3])
98
+
99
+ # return word_dict
100
+ print(text_pca.shape,image_pca.shape)
101
+ return text_pca,image_pca
102
+
103
+
104
+
105
+ def PCA(img_emb, text_emb,n_components = 3):
106
+ x = torch.tensor([[1.,2.,3.,7.],[4.,5.,3.,6.],[7.,9.,8.,9.],[11.,13.,17.,11.]])
107
+ # plz change data type to float or complex
108
+
109
+ print(x.shape)
110
+ u,s,v = torch.pca_lowrank(x,q=None, center=False,niter=2)
111
+
112
+ u.shape,s.shape,v.shape
113
+
114
115
+
116
+ # torch.matmul(x,v[:,:3])
117
+ pass
118
+
119
+
120
+
121
+ # NODE type
122
+
123
+ # PCA type.
124
+
125
+ # ELSE type.
126
+ demo = gr.Interface(
127
+ fn=democlip,
128
+ # inputs = [gr.Image(),gr.Textbox(lable='input prediction')],
129
+ inputs = ['text',gr.Textbox(lable='input prediction')],
130
+ # outputs='label'
131
+ outputs = [gr.Textbox(label='text pca Box'),gr.Textbox(label='image pca Box')]
132
+ )
133
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #requirements.txt
2
+
3
+ transformers
4
+ torch
5
+
6
+
7
+ peft
8
+ loralib
9
+ numpy
10
+ pandas
11
+
12
+ tqdm
13
+ torchvision
14
+
15
+ selenium
16
+ clip
17
+