Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
model_name = "Spestly/AwA-1.5B"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
11 |
model.eval()
|
12 |
|
|
|
|
|
|
|
|
|
13 |
def generate_response(message, history):
|
|
|
|
|
14 |
instruction = (
|
15 |
"You are an LLM called AwA. Aayan Mishra finetunes you. Anthropic does NOT train you. "
|
16 |
"You are a Qwen 2.5 fine-tune. Your purpose is the help the user accomplish their request to the best of your abilities. "
|
@@ -18,38 +42,77 @@ def generate_response(message, history):
|
|
18 |
f"### Instruction:\n{message}\n\n### Response:"
|
19 |
)
|
20 |
|
21 |
-
inputs = tokenizer(
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
# Create
|
43 |
iface = gr.ChatInterface(
|
44 |
generate_response,
|
45 |
-
chatbot=gr.Chatbot(
|
|
|
|
|
|
|
46 |
textbox=gr.Textbox(
|
47 |
placeholder="Type your message here...",
|
48 |
container=False,
|
49 |
scale=7
|
50 |
),
|
51 |
-
title="AwA-1.5B π -
|
52 |
-
description="Chat with AwA (Answers with Athena).
|
53 |
theme="ocean",
|
54 |
examples=[
|
55 |
"How can CRISPR help us Humans?",
|
@@ -59,5 +122,11 @@ iface = gr.ChatInterface(
|
|
59 |
type="messages"
|
60 |
)
|
61 |
|
62 |
-
iface.queue()
|
63 |
-
iface.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
from transformers import BitsAndBytesConfig
|
5 |
+
import gc
|
6 |
+
|
7 |
+
# Configure 8-bit quantization
|
8 |
+
quantization_config = BitsAndBytesConfig(
|
9 |
+
load_in_8bit=True,
|
10 |
+
llm_int8_threshold=6.0,
|
11 |
+
llm_int8_has_fp16_weight=False,
|
12 |
+
)
|
13 |
|
14 |
# Load model and tokenizer
|
15 |
model_name = "Spestly/AwA-1.5B"
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
model_name,
|
19 |
+
device_map="auto",
|
20 |
+
quantization_config=quantization_config,
|
21 |
+
low_cpu_mem_usage=True,
|
22 |
+
torch_dtype=torch.float32,
|
23 |
+
)
|
24 |
|
25 |
+
# Optimizations
|
26 |
+
model.config.use_cache = True
|
27 |
+
torch.backends.cudnn.benchmark = False
|
28 |
+
torch._C._jit_set_profiling_executor(False)
|
29 |
model.eval()
|
30 |
|
31 |
+
# Clear memory
|
32 |
+
gc.collect()
|
33 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
34 |
+
|
35 |
def generate_response(message, history):
|
36 |
+
gc.collect()
|
37 |
+
|
38 |
instruction = (
|
39 |
"You are an LLM called AwA. Aayan Mishra finetunes you. Anthropic does NOT train you. "
|
40 |
"You are a Qwen 2.5 fine-tune. Your purpose is the help the user accomplish their request to the best of your abilities. "
|
|
|
42 |
f"### Instruction:\n{message}\n\n### Response:"
|
43 |
)
|
44 |
|
45 |
+
inputs = tokenizer(
|
46 |
+
instruction,
|
47 |
+
return_tensors="pt",
|
48 |
+
padding=True,
|
49 |
+
truncation=True,
|
50 |
+
max_length=512
|
51 |
+
)
|
52 |
|
53 |
+
try:
|
54 |
+
# Generate initial sequence
|
55 |
+
generated_ids = []
|
56 |
+
past_key_values = None
|
57 |
+
attention_mask = inputs["attention_mask"]
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
for _ in range(400): # max_new_tokens
|
61 |
+
outputs = model(
|
62 |
+
input_ids=inputs["input_ids"] if not generated_ids else torch.tensor([[token] for token in generated_ids[-1:]], device=model.device),
|
63 |
+
attention_mask=attention_mask,
|
64 |
+
past_key_values=past_key_values,
|
65 |
+
use_cache=True,
|
66 |
+
)
|
67 |
+
|
68 |
+
next_token_logits = outputs.logits[:, -1, :]
|
69 |
+
past_key_values = outputs.past_key_values
|
70 |
+
|
71 |
+
# Apply temperature and top-p sampling
|
72 |
+
probs = torch.nn.functional.softmax(next_token_logits / 0.7, dim=-1)
|
73 |
+
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
|
74 |
+
cumsum_probs = torch.cumsum(sorted_probs, dim=-1)
|
75 |
+
idx_to_remove = cumsum_probs > 0.9
|
76 |
+
idx_to_remove[:, 1:] = idx_to_remove[:, :-1].clone()
|
77 |
+
idx_to_remove[:, 0] = 0
|
78 |
+
sorted_probs[idx_to_remove] = 0.0
|
79 |
+
sorted_probs = sorted_probs / sorted_probs.sum(dim=-1, keepdim=True)
|
80 |
+
next_token = torch.multinomial(sorted_probs, num_samples=1)
|
81 |
+
next_token = sorted_indices.gather(-1, next_token)
|
82 |
+
|
83 |
+
generated_ids.append(next_token.item())
|
84 |
+
attention_mask = torch.cat([attention_mask, torch.ones((1, 1), device=model.device)], dim=-1)
|
85 |
+
|
86 |
+
# Decode the current token and yield
|
87 |
+
current_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
88 |
+
if "### Response:" in current_text:
|
89 |
+
response_text = current_text.split("### Response:")[-1].strip()
|
90 |
+
yield response_text
|
91 |
+
|
92 |
+
# Check for end of generation
|
93 |
+
if next_token.item() == tokenizer.eos_token_id:
|
94 |
+
break
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
yield f"An error occurred: {str(e)}"
|
98 |
+
finally:
|
99 |
+
gc.collect()
|
100 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
101 |
|
102 |
+
# Create Gradio interface
|
103 |
iface = gr.ChatInterface(
|
104 |
generate_response,
|
105 |
+
chatbot=gr.Chatbot(
|
106 |
+
height=400,
|
107 |
+
type="messages",
|
108 |
+
),
|
109 |
textbox=gr.Textbox(
|
110 |
placeholder="Type your message here...",
|
111 |
container=False,
|
112 |
scale=7
|
113 |
),
|
114 |
+
title="AwA-1.5B π - CPU Optimized",
|
115 |
+
description="Chat with AwA (Answers with Athena). Optimized for CPU operation.",
|
116 |
theme="ocean",
|
117 |
examples=[
|
118 |
"How can CRISPR help us Humans?",
|
|
|
122 |
type="messages"
|
123 |
)
|
124 |
|
125 |
+
iface.queue(max_size=5)
|
126 |
+
iface.launch(
|
127 |
+
share=False,
|
128 |
+
debug=False,
|
129 |
+
show_error=True,
|
130 |
+
server_name="0.0.0.0",
|
131 |
+
server_port=7860,
|
132 |
+
)
|