File size: 22,496 Bytes
5953ef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
959183d
 
 
5953ef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import math
import re
from collections import defaultdict
from datetime import datetime
from typing import List

import torch
import torch.optim as optim
from rex import accelerator
from rex.data.data_manager import DataManager
from rex.data.dataset import CachedDataset, StreamReadDataset
from rex.tasks.simple_metric_task import SimpleMetricTask
from rex.utils.batch import decompose_batch_into_instances
from rex.utils.config import ConfigParser
from rex.utils.dict import flatten_dict
from rex.utils.io import load_jsonlines
from rex.utils.registry import register
from torch.utils.tensorboard import SummaryWriter
from transformers.optimization import (
    get_cosine_schedule_with_warmup,
    get_linear_schedule_with_warmup,
)

from .metric import MrcNERMetric, MrcSpanMetric, MultiPartSpanMetric
from .model import (
    MrcGlobalPointerModel,
    MrcPointerMatrixModel,
    SchemaGuidedInstructBertModel,
)
from .transform import (
    CachedLabelPointerTransform,
    CachedPointerMRCTransform,
    CachedPointerTaggingTransform,
)


@register("task")
class MrcTaggingTask(SimpleMetricTask):
    def __init__(self, config, **kwargs) -> None:
        super().__init__(config, **kwargs)

    def after_initialization(self):
        now_string = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
        self.tb_logger: SummaryWriter = SummaryWriter(
            log_dir=self.task_path / "tb_summary" / now_string,
            comment=self.config.comment,
        )

    def after_whole_train(self):
        self.tb_logger.close()

    def get_grad_norm(self):
        # for name, param in self.model.named_parameters():
        #     if param.grad is not None:
        #         grads = param.grad.detach().data
        #         grad_norm = (grads.norm(p=2) / grads.numel()).item()
        total_norm = 0.0
        for p in self.model.parameters():
            if p.grad is not None:
                param_norm = p.grad.detach().data.norm(2)
                total_norm += param_norm.item() ** 2
        total_norm = total_norm ** (1.0 / 2)
        return total_norm

    def log_loss(
        self, idx: int, loss_item: float, step_or_epoch: str, dataset_name: str
    ):
        self.tb_logger.add_scalar(
            f"loss/{dataset_name}/{step_or_epoch}", loss_item, idx
        )
        # self.tb_logger.add_scalars(
        #     "lr",
        #     {
        #         str(i): self.optimizer.param_groups[i]["lr"]
        #         for i in range(len(self.optimizer.param_groups))
        #     },
        #     idx,
        # )
        self.tb_logger.add_scalar("lr", self.optimizer.param_groups[0]["lr"], idx)
        self.tb_logger.add_scalar("grad_norm_total", self.get_grad_norm(), idx)

    def log_metrics(
        self, idx: int, metrics: dict, step_or_epoch: str, dataset_name: str
    ):
        metrics = flatten_dict(metrics)
        self.tb_logger.add_scalars(f"{dataset_name}/{step_or_epoch}", metrics, idx)

    def init_transform(self):
        return CachedPointerTaggingTransform(
            self.config.max_seq_len,
            self.config.plm_dir,
            self.config.ent_type2query_filepath,
            mode=self.config.mode,
            negative_sample_prob=self.config.negative_sample_prob,
        )

    def init_data_manager(self):
        return DataManager(
            self.config.train_filepath,
            self.config.dev_filepath,
            self.config.test_filepath,
            CachedDataset,
            self.transform,
            load_jsonlines,
            self.config.train_batch_size,
            self.config.eval_batch_size,
            self.transform.collate_fn,
            use_stream_transform=False,
            debug_mode=self.config.debug_mode,
            dump_cache_dir=self.config.dump_cache_dir,
            regenerate_cache=self.config.regenerate_cache,
        )

    def init_model(self):
        # m = MrcPointerMatrixModel(
        m = MrcGlobalPointerModel(
            self.config.plm_dir,
            biaffine_size=self.config.biaffine_size,
            dropout=self.config.dropout,
            mode=self.config.mode,
        )
        return m

    def init_metric(self):
        return MrcNERMetric()

    def init_optimizer(self):
        no_decay = r"(embedding|LayerNorm|\.bias$)"
        plm_lr = r"^plm\."
        non_trainable = r"^plm\.(emb|encoder\.layer\.[0-3])"

        param_groups = []
        for name, param in self.model.named_parameters():
            lr = self.config.learning_rate
            weight_decay = self.config.weight_decay
            if re.search(non_trainable, name):
                param.requires_grad = False
            if not re.search(plm_lr, name):
                lr = self.config.other_learning_rate
            if re.search(no_decay, name):
                weight_decay = 0.0
            param_groups.append(
                {"params": param, "lr": lr, "weight_decay": weight_decay}
            )
        return optim.AdamW(
            param_groups,
            lr=self.config.learning_rate,
            betas=(0.9, 0.98),
            eps=1e-6,
        )

    def init_lr_scheduler(self):
        num_training_steps = int(
            len(self.data_manager.train_loader)
            * self.config.num_epochs
            * accelerator.num_processes
        )
        num_warmup_steps = math.floor(
            num_training_steps * self.config.warmup_proportion
        )
        # return get_linear_schedule_with_warmup(
        return get_cosine_schedule_with_warmup(
            self.optimizer,
            num_warmup_steps=num_warmup_steps,
            num_training_steps=num_training_steps,
        )

    def predict_api(self, texts: List[str], **kwargs):
        raw_dataset = self.transform.predict_transform(texts)
        text_ids = sorted(list({ins["id"] for ins in raw_dataset}))
        loader = self.data_manager.prepare_loader(raw_dataset)
        # to prepare input device
        loader = accelerator.prepare_data_loader(loader)
        id2ents = defaultdict(set)
        for batch in loader:
            batch_out = self.model(**batch, is_eval=True)
            for _id, _pred in zip(batch["id"], batch_out["pred"]):
                id2ents[_id].update(_pred)
        results = [id2ents[_id] for _id in text_ids]

        return results


@register("task")
class MrcQaTask(MrcTaggingTask):
    def init_transform(self):
        return CachedPointerMRCTransform(
            self.config.max_seq_len,
            self.config.plm_dir,
            mode=self.config.mode,
        )

    def init_model(self):
        # m = MrcPointerMatrixModel(
        m = MrcGlobalPointerModel(
            self.config.plm_dir,
            biaffine_size=self.config.biaffine_size,
            dropout=self.config.dropout,
            mode=self.config.mode,
        )
        return m

    def init_metric(self):
        return MrcSpanMetric()

    def predict_api(self, data: list[dict], **kwargs):
        """
        Args:
            data: a list of dict with query, context, and background strings
        """
        raw_dataset = self.transform.predict_transform(data)
        loader = self.data_manager.prepare_loader(raw_dataset)
        results = []
        for batch in loader:
            batch_out = self.model(**batch, is_eval=True)
            batch["pred"] = batch_out["pred"]
            instances = decompose_batch_into_instances(batch)
            for ins in instances:
                preds = ins["pred"]
                ins_results = []
                for index_list in preds:
                    ins_result = []
                    for i in index_list:
                        ins_result.append(ins["raw_tokens"][i])
                    ins_results.append(("".join(ins_result), tuple(index_list)))
                results.append(ins_results)

        return results


class StreamReadDatasetWithLen(StreamReadDataset):
    def __len__(self):
        return 631346


@register("task")
class SchemaGuidedInstructBertTask(MrcTaggingTask):
    # def __init__(self, config, **kwargs) -> None:
    #     super().__init__(config, **kwargs)

    #     from watchmen import ClientMode, WatchClient

    #     client = WatchClient(
    #         id=config.task_name,
    #         gpus=[4],
    #         req_gpu_num=1,
    #         mode=ClientMode.SCHEDULE,
    #         server_host="127.0.0.1",
    #         server_port=62333,
    #     )
    #     client.wait()

    # def init_lr_scheduler(self):
    #     num_training_steps = int(
    #         631346 / self.config.train_batch_size
    #         * self.config.num_epochs
    #         * accelerator.num_processes
    #     )
    #     num_warmup_steps = math.floor(
    #         num_training_steps * self.config.warmup_proportion
    #     )
    #     # return get_linear_schedule_with_warmup(
    #     return get_cosine_schedule_with_warmup(
    #         self.optimizer,
    #         num_warmup_steps=num_warmup_steps,
    #         num_training_steps=num_training_steps,
    #     )

    def init_transform(self):
        self.transform: CachedLabelPointerTransform
        return CachedLabelPointerTransform(
            self.config.max_seq_len,
            self.config.plm_dir,
            mode=self.config.mode,
            label_span=self.config.label_span,
            include_instructions=self.config.get("include_instructions", True),
        )

    def init_data_manager(self):
        if self.config.get("stream_mode", False):
            DatasetClass = StreamReadDatasetWithLen
            transform = self.transform.transform
        else:
            DatasetClass = CachedDataset
            transform = self.transform
        return DataManager(
            self.config.train_filepath,
            self.config.dev_filepath,
            self.config.test_filepath,
            DatasetClass,
            transform,
            load_jsonlines,
            self.config.train_batch_size,
            self.config.eval_batch_size,
            self.transform.collate_fn,
            use_stream_transform=self.config.get("stream_mode", False),
            debug_mode=self.config.debug_mode,
            dump_cache_dir=self.config.dump_cache_dir,
            regenerate_cache=self.config.regenerate_cache,
        )

    def init_model(self):
        self.model = SchemaGuidedInstructBertModel(
            self.config.plm_dir,
            vocab_size=len(self.transform.tokenizer),
            use_rope=self.config.use_rope,
            biaffine_size=self.config.biaffine_size,
            dropout=self.config.dropout,
        )

        if self.config.get("base_model_path"):
            self.load(
                self.config.base_model_path,
                load_config=False,
                load_model=True,
                load_optimizer=False,
                load_history=False,
            )
        return self.model

    def init_optimizer(self):
        no_decay = r"(embedding|LayerNorm|\.bias$)"
        plm_lr = r"^plm\."
        # non_trainable = r"^plm\.(emb|encoder\.layer\.[0-3])"
        non_trainable = "no_non_trainable"

        param_groups = []
        for name, param in self.model.named_parameters():
            lr = self.config.learning_rate
            weight_decay = self.config.weight_decay
            if re.search(non_trainable, name):
                param.requires_grad = False
            if not re.search(plm_lr, name):
                lr = self.config.other_learning_rate
            if re.search(no_decay, name):
                weight_decay = 0.0
            param_groups.append(
                {"params": param, "lr": lr, "weight_decay": weight_decay}
            )
        return optim.AdamW(
            param_groups,
            lr=self.config.learning_rate,
            betas=(0.9, 0.98),
            eps=1e-6,
        )

    def init_metric(self):
        return MultiPartSpanMetric()

    def _convert_span_to_string(self, span, token_ids, tokenizer):
        string = ""
        if len(span) == 0 or len(span) > 2:
            pass
        elif len(span) == 1:
            string = tokenizer.decode(token_ids[span[0]])
        elif len(span) == 2:
            string = tokenizer.decode(token_ids[span[0] : span[1] + 1])
        return (string, self.reset_position(token_ids, span))

    def reset_position(self, input_ids: list[int], span: list[int]) -> list[int]:
        if isinstance(input_ids, torch.Tensor):
            input_ids = input_ids.cpu().tolist()
        if len(span) < 1:
            return span

        tp_token_id, tl_token_id = self.transform.tokenizer.convert_tokens_to_ids(
            [self.transform.tp_token, self.transform.tl_token]
        )
        offset = 0
        if tp_token_id in input_ids:
            offset = input_ids.index(tp_token_id) + 1
        elif tl_token_id in input_ids:
            offset = input_ids.index(tl_token_id) + 1
        return [i - offset for i in span]

    def predict_api(self, data: list[dict], **kwargs):
        """
        Args:
            data: a list of dict in UDI:
                {
                    "id": str,
                    "instruction": str,
                    "schema": {
                        "ent": list,
                        "rel": list,
                        "event": dict,
                        "cls": list,
                        "discontinuous_ent": list,
                        "hyper_rel": dict
                    },
                    "text": str,
                    "bg": str,
                    "ans": {},  # empty dict
                }
        """
        raw_dataset = [self.transform.transform(d) for d in data]
        loader = self.data_manager.prepare_loader(raw_dataset)
        results = []
        for batch in loader:
            batch_out = self.model(**batch, is_eval=True)
            batch["pred"] = batch_out["pred"]
            instances = decompose_batch_into_instances(batch)
            for ins in instances:
                pred_clses = []
                pred_ents = []
                pred_rels = []
                pred_trigger_to_event = defaultdict(
                    lambda: {"event_type": "", "arguments": []}
                )
                pred_events = []
                pred_spans = []
                pred_discon_ents = []
                pred_hyper_rels = []
                raw_schema = ins["raw"]["schema"]
                for multi_part_span in ins["pred"]:
                    span = tuple(multi_part_span)
                    span_to_label = ins["span_to_label"]
                    if span[0] in span_to_label:
                        label = span_to_label[span[0]]
                        if label["task"] == "cls" and len(span) == 1:
                            pred_clses.append(label["string"])
                        elif label["task"] == "ent" and len(span) == 2:
                            string = self._convert_span_to_string(
                                span[1], ins["input_ids"], self.transform.tokenizer
                            )
                            pred_ents.append((label["string"], string))
                        elif label["task"] == "rel" and len(span) == 3:
                            head = self._convert_span_to_string(
                                span[1], ins["input_ids"], self.transform.tokenizer
                            )
                            tail = self._convert_span_to_string(
                                span[2], ins["input_ids"], self.transform.tokenizer
                            )
                            pred_rels.append((label["string"], head, tail))
                        elif label["task"] == "event":
                            if label["type"] == "lm" and len(span) == 2:
                                pred_trigger_to_event[span[1]]["event_type"] = label["string"]  # fmt: skip
                            elif label["type"] == "lr" and len(span) == 3:
                                arg = self._convert_span_to_string(
                                    span[2], ins["input_ids"], self.transform.tokenizer
                                )
                                pred_trigger_to_event[span[1]]["arguments"].append(
                                    {"argument": arg, "role": label["string"]}
                                )
                        elif label["task"] == "discontinuous_ent" and len(span) > 1:
                            parts = [
                                self._convert_span_to_string(
                                    part, ins["input_ids"], self.transform.tokenizer
                                )
                                for part in span[1:]
                            ]
                            string = " ".join([part[0] for part in parts])
                            position = []
                            for part in parts:
                                position.append(part[1])
                            pred_discon_ents.append(
                                (label["string"], string, self.reset_position(position))
                            )
                        elif label["task"] == "hyper_rel" and len(span) == 5 and span[3] in span_to_label:  # fmt: skip
                            q_label = span_to_label[span[3]]
                            span_1 = self._convert_span_to_string(
                                span[1], ins["input_ids"], self.transform.tokenizer
                            )
                            span_2 = self._convert_span_to_string(
                                span[2], ins["input_ids"], self.transform.tokenizer
                            )
                            span_4 = self._convert_span_to_string(
                                span[4], ins["input_ids"], self.transform.tokenizer
                            )
                            pred_hyper_rels.append((label["string"], span_1, span_2, q_label["string"], span_4))  # fmt: skip
                    else:
                        # span task has no labels
                        pred_token_ids = []
                        for part in span:
                            _pred_token_ids = [ins["input_ids"][i] for i in part]
                            pred_token_ids.extend(_pred_token_ids)
                        span_string = self.transform.tokenizer.decode(pred_token_ids)
                        pred_spans.append(
                            (
                                span_string,
                                tuple(
                                    [
                                        tuple(
                                            self.reset_position(
                                                ins["input_ids"].cpu().tolist(), part
                                            )
                                        )
                                        for part in span
                                    ]
                                ),
                            )
                        )
                for trigger, item in pred_trigger_to_event.items():
                    trigger = self._convert_span_to_string(
                        trigger, ins["input_ids"], self.transform.tokenizer
                    )
                    if item["event_type"] not in raw_schema["event"]:
                        continue
                    legal_roles = raw_schema["event"][item["event_type"]]
                    pred_events.append(
                        {
                            "trigger": trigger,
                            "event_type": item["event_type"],
                            "arguments": [
                                arg
                                for arg in filter(
                                    lambda arg: arg["role"] in legal_roles,
                                    item["arguments"],
                                )
                            ],
                        }
                    )
                results.append(
                    {
                        "id": ins["raw"]["id"],
                        "results": {
                            "cls": pred_clses,
                            "ent": pred_ents,
                            "rel": pred_rels,
                            "event": pred_events,
                            "span": pred_spans,
                            "discon_ent": pred_discon_ents,
                            "hyper_rel": pred_hyper_rels,
                        },
                    }
                )

        return results


if __name__ == "__main__":
    pass
    # further_finetune()

    # from rex.utils.config import ConfigParser

    # config = ConfigParser.parse_cmd(cmd_args=["-dc", "conf/ner.yaml"])
    # config = ConfigParser.parse_cmd(cmd_args=["-dc", "conf/mirror-ace05en.yaml"])

    # task = MrcTaggingTask(
    #     config,
    #     initialize=True,
    #     makedirs=True,
    #     dump_configfile=True,
    # )
    # task = SchemaGuidedInstructBertTask.from_taskdir(
    #     "outputs/InstructBert_TagSpan_DebertaV3Base_ACE05EN_Rel",
    #     initialize=True,
    #     load_config=True,
    #     dump_configfile=False,
    # )
    # task = SchemaGuidedInstructBertTask(
    #     config,
    #     initialize=True,
    #     makedirs=True,
    #     dump_configfile=False,
    # )
    # task.load(
    #     "outputs/InstructBert_TagSpan_DebertaV3Base_ACE05EN_NerRelEvent/ckpt/SchemaGuidedInstructBertModel.epoch.0.pth",
    #     load_config=False,
    # )
    # task.eval("test", verbose=True, dump=True, dump_middle=True, postfix="re_eval")
    # task.load(
    #     # "outputs/Mirror_RobertaBaseWwm_Cons_MsraMrc/ckpt/MrcGlobalPointerModel.best.pth",
    #     # "outputs/Mirror_RobertaBaseWwm_W2_MsraMrc_HyperParamExp1/ckpt/MrcGlobalPointerModel.best.pth",
    #     config.base_model_path,
    #     load_config=False,
    #     load_model=True,
    #     load_optimizer=False,
    #     load_history=False,
    # )
    # task.train()
    # task = MrcTaggingTask.from_taskdir(
    #     "outputs/Mirror_W2_MSRAv2_NER",
    #     initialize=True,
    #     dump_configfile=False,
    #     load_config=True,
    # )
    # for name, _ in task.model.named_parameters():
    #     print(name)
    # task.eval("test", verbose=True, dump=True, dump_middle=True, postfix="re_eval.0.1")

    # task = MrcQaTask(
    #     config,
    #     initialize=True,
    #     makedirs=True,
    #     dump_configfile=True,
    # )
    # task.train()
    # task.eval("dev", verbose=True, dump=True, dump_middle=True, postfix="re_eval")