Spaces:
Running
Running
im
commited on
Commit
·
660ea27
1
Parent(s):
3957ec0
Example 2 encoder
Browse files- app.py +148 -71
- encoder.py +89 -0
- test_local.py +14 -0
app.py
CHANGED
@@ -1,80 +1,157 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
|
3 |
-
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import requests
|
5 |
-
import
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
try:
|
14 |
-
if input_image_url:
|
15 |
-
# Process image with accompanying text
|
16 |
-
response = requests.get(input_image_url, stream=True)
|
17 |
-
response.raise_for_status()
|
18 |
-
image = Image.open(response.raw)
|
19 |
-
|
20 |
-
# Use a default text if none is provided
|
21 |
-
if not input_text:
|
22 |
-
input_text = "this is an image"
|
23 |
-
|
24 |
-
# Prepare inputs for the model
|
25 |
-
inputs = processor(
|
26 |
-
text=[input_text],
|
27 |
-
images=image,
|
28 |
-
return_tensors="pt",
|
29 |
-
padding=True
|
30 |
-
)
|
31 |
-
|
32 |
-
with torch.no_grad():
|
33 |
-
outputs = model(**inputs)
|
34 |
-
|
35 |
-
image_embedding = outputs.logits_per_image.cpu().numpy().tolist()
|
36 |
-
return {
|
37 |
-
"type": "image_embedding",
|
38 |
-
"input_image_url": input_image_url,
|
39 |
-
"input_text": input_text,
|
40 |
-
"embedding": image_embedding
|
41 |
-
}
|
42 |
-
|
43 |
-
elif input_text:
|
44 |
-
# Process text input only
|
45 |
-
inputs = processor(
|
46 |
-
text=[input_text],
|
47 |
-
images=None,
|
48 |
-
return_tensors="pt",
|
49 |
-
padding=True
|
50 |
-
)
|
51 |
-
with torch.no_grad():
|
52 |
-
outputs = model(**inputs)
|
53 |
-
|
54 |
-
text_embedding = outputs.logits_per_text.cpu().numpy().tolist()
|
55 |
-
return {
|
56 |
-
"type": "text_embedding",
|
57 |
-
"input_text": input_text,
|
58 |
-
"embedding": text_embedding
|
59 |
-
}
|
60 |
-
else:
|
61 |
-
return {"error": "Please provide either a text query or an image URL."}
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
except Exception as e:
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
],
|
73 |
-
outputs="json",
|
74 |
-
title="FashionCLIP Combined Embedding API",
|
75 |
-
description="Provide a text query and/or an image URL to compute embeddings for vector search."
|
76 |
)
|
77 |
|
78 |
-
# Launch
|
79 |
if __name__ == "__main__":
|
80 |
-
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
|
3 |
+
# from PIL import Image
|
4 |
+
# import requests
|
5 |
+
# import torch
|
6 |
+
|
7 |
+
# # Load the FashionCLIP processor and model
|
8 |
+
# processor = AutoProcessor.from_pretrained("patrickjohncyh/fashion-clip")
|
9 |
+
# model = AutoModelForZeroShotImageClassification.from_pretrained("patrickjohncyh/fashion-clip")
|
10 |
+
|
11 |
+
# # Define the function to process both text and image inputs
|
12 |
+
# def generate_embeddings(input_text=None, input_image_url=None):
|
13 |
+
# try:
|
14 |
+
# if input_image_url:
|
15 |
+
# # Process image with accompanying text
|
16 |
+
# response = requests.get(input_image_url, stream=True)
|
17 |
+
# response.raise_for_status()
|
18 |
+
# image = Image.open(response.raw)
|
19 |
+
|
20 |
+
# # Use a default text if none is provided
|
21 |
+
# if not input_text:
|
22 |
+
# input_text = "this is an image"
|
23 |
+
|
24 |
+
# # Prepare inputs for the model
|
25 |
+
# inputs = processor(
|
26 |
+
# text=[input_text],
|
27 |
+
# images=image,
|
28 |
+
# return_tensors="pt",
|
29 |
+
# padding=True
|
30 |
+
# )
|
31 |
+
|
32 |
+
# with torch.no_grad():
|
33 |
+
# outputs = model(**inputs)
|
34 |
+
|
35 |
+
# image_embedding = outputs.logits_per_image.cpu().numpy().tolist()
|
36 |
+
# return {
|
37 |
+
# "type": "image_embedding",
|
38 |
+
# "input_image_url": input_image_url,
|
39 |
+
# "input_text": input_text,
|
40 |
+
# "embedding": image_embedding
|
41 |
+
# }
|
42 |
+
|
43 |
+
# elif input_text:
|
44 |
+
# # Process text input only
|
45 |
+
# inputs = processor(
|
46 |
+
# text=[input_text],
|
47 |
+
# images=None,
|
48 |
+
# return_tensors="pt",
|
49 |
+
# padding=True
|
50 |
+
# )
|
51 |
+
# with torch.no_grad():
|
52 |
+
# outputs = model(**inputs)
|
53 |
+
|
54 |
+
# text_embedding = outputs.logits_per_text.cpu().numpy().tolist()
|
55 |
+
# return {
|
56 |
+
# "type": "text_embedding",
|
57 |
+
# "input_text": input_text,
|
58 |
+
# "embedding": text_embedding
|
59 |
+
# }
|
60 |
+
# else:
|
61 |
+
# return {"error": "Please provide either a text query or an image URL."}
|
62 |
+
|
63 |
+
# except Exception as e:
|
64 |
+
# return {"error": str(e)}
|
65 |
+
|
66 |
+
# # Create the Gradio interface
|
67 |
+
# interface = gr.Interface(
|
68 |
+
# fn=generate_embeddings,
|
69 |
+
# inputs=[
|
70 |
+
# gr.Textbox(label="Text Query (Optional)", placeholder="e.g., red dress (used with image or for text embedding)"),
|
71 |
+
# gr.Textbox(label="Image URL", placeholder="e.g., https://example.com/image.jpg (used with or without text query)")
|
72 |
+
# ],
|
73 |
+
# outputs="json",
|
74 |
+
# title="FashionCLIP Combined Embedding API",
|
75 |
+
# description="Provide a text query and/or an image URL to compute embeddings for vector search."
|
76 |
+
# )
|
77 |
+
|
78 |
+
# # Launch the app
|
79 |
+
# if __name__ == "__main__":
|
80 |
+
# interface.launch()
|
81 |
+
# print(generate_embeddings("red dress"))
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
import uuid
|
86 |
import requests
|
87 |
+
from PIL import Image
|
88 |
+
import numpy as np
|
89 |
+
import gradio as gr
|
90 |
+
from encoder import FashionCLIPEncoder
|
91 |
|
92 |
+
# Constants
|
93 |
+
REQUESTS_HEADERS = {
|
94 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
95 |
+
}
|
96 |
|
97 |
+
# Initialize encoder
|
98 |
+
encoder = FashionCLIPEncoder()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# Helper function to download images
|
101 |
+
def download_image_as_pil(url: str, timeout: int = 10) -> Image.Image:
|
102 |
+
try:
|
103 |
+
response = requests.get(url, stream=True, headers=REQUESTS_HEADERS, timeout=timeout)
|
104 |
+
if response.status_code == 200:
|
105 |
+
return Image.open(response.raw).convert("RGB") # Ensure consistent format
|
106 |
+
return None
|
107 |
except Exception as e:
|
108 |
+
print(f"Error downloading image: {e}")
|
109 |
+
return None
|
110 |
+
|
111 |
+
# Embedding function for a batch of images
|
112 |
+
def batch_process_images(image_urls: list):
|
113 |
+
embeddings = []
|
114 |
+
results = []
|
115 |
+
for url in image_urls:
|
116 |
+
try:
|
117 |
+
# Download image
|
118 |
+
image = download_image_as_pil(url)
|
119 |
+
if not image:
|
120 |
+
results.append({"image_url": url, "error": "Failed to download image"})
|
121 |
+
continue
|
122 |
+
|
123 |
+
# Generate embedding
|
124 |
+
embedding = encoder.encode_images([image])[0]
|
125 |
+
|
126 |
+
# Normalize embedding
|
127 |
+
embedding_normalized = embedding / np.linalg.norm(embedding)
|
128 |
+
|
129 |
+
# Append results
|
130 |
+
results.append({
|
131 |
+
"image_url": url,
|
132 |
+
"embedding_preview": embedding_normalized[:5].tolist(), # First 5 values for preview
|
133 |
+
"success": True
|
134 |
+
})
|
135 |
+
except Exception as e:
|
136 |
+
results.append({"image_url": url, "error": str(e)})
|
137 |
+
return results
|
138 |
+
|
139 |
+
# Gradio Interface
|
140 |
+
iface = gr.Interface(
|
141 |
+
fn=batch_process_images,
|
142 |
+
inputs=gr.Textbox(
|
143 |
+
lines=5,
|
144 |
+
placeholder="Enter image URLs separated by commas",
|
145 |
+
label="Batch Image URLs",
|
146 |
+
),
|
147 |
+
outputs=gr.JSON(label="Embedding Results"),
|
148 |
+
title="Batch Fashion CLIP Embedding API",
|
149 |
+
description="Enter multiple image URLs (separated by commas) to generate embeddings for the batch. Each embedding preview includes the first 5 values.",
|
150 |
+
examples=[
|
151 |
+
["https://cdn.shopify.com/s/files/1/0522/2239/4534/files/CT21355-22_1024x1024.webp, https://cdn.shopify.com/s/files/1/0522/2239/4534/files/00907857-C6B0-4D2A-8AEA-688BDE1E67D7_1024x1024.jpg"]
|
152 |
],
|
|
|
|
|
|
|
153 |
)
|
154 |
|
155 |
+
# Launch Gradio App
|
156 |
if __name__ == "__main__":
|
157 |
+
iface.launch()
|
encoder.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Optional
|
2 |
+
import torch
|
3 |
+
from PIL.Image import Image
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from datasets import Dataset
|
6 |
+
from transformers import AutoModel, AutoProcessor
|
7 |
+
|
8 |
+
MODEL_NAME = "Marqo/marqo-fashionCLIP"
|
9 |
+
|
10 |
+
|
11 |
+
class FashionCLIPEncoder:
|
12 |
+
def __init__(self):
|
13 |
+
self.processor = AutoProcessor.from_pretrained(
|
14 |
+
MODEL_NAME, trust_remote_code=True
|
15 |
+
)
|
16 |
+
self.model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
17 |
+
|
18 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
self.model.to(self.device)
|
20 |
+
self.model.eval()
|
21 |
+
|
22 |
+
def encode_images(
|
23 |
+
self, images: List[Image], batch_size: Optional[int] = None
|
24 |
+
) -> List[List[float]]:
|
25 |
+
if batch_size is None:
|
26 |
+
batch_size = min(len(images), 32) # Default to a safe batch size
|
27 |
+
|
28 |
+
def transform_fn(el: Dict):
|
29 |
+
return self.processor(
|
30 |
+
images=[content for content in el["image"]], return_tensors="pt"
|
31 |
+
)
|
32 |
+
|
33 |
+
dataset = Dataset.from_dict({"image": images})
|
34 |
+
dataset.set_format("torch")
|
35 |
+
dataset.set_transform(transform_fn)
|
36 |
+
dataloader = DataLoader(dataset, batch_size=batch_size)
|
37 |
+
|
38 |
+
image_embeddings = []
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
for batch in dataloader:
|
42 |
+
try:
|
43 |
+
batch = {k: v.to(self.device) for k, v in batch.items()}
|
44 |
+
embeddings = self._encode_images(batch)
|
45 |
+
image_embeddings.extend(embeddings)
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error encoding image batch: {e}")
|
48 |
+
|
49 |
+
return image_embeddings
|
50 |
+
|
51 |
+
def encode_text(
|
52 |
+
self, text: List[str], batch_size: Optional[int] = None
|
53 |
+
) -> List[List[float]]:
|
54 |
+
if batch_size is None:
|
55 |
+
batch_size = min(len(text), 32) # Default to a safe batch size
|
56 |
+
|
57 |
+
def transform_fn(el: Dict):
|
58 |
+
kwargs = {
|
59 |
+
"padding": "max_length",
|
60 |
+
"return_tensors": "pt",
|
61 |
+
"truncation": True,
|
62 |
+
}
|
63 |
+
return self.processor(text=el["text"], **kwargs)
|
64 |
+
|
65 |
+
dataset = Dataset.from_dict({"text": text})
|
66 |
+
dataset = dataset.map(
|
67 |
+
function=transform_fn, batched=True, remove_columns=["text"]
|
68 |
+
)
|
69 |
+
dataset.set_format("torch")
|
70 |
+
dataloader = DataLoader(dataset, batch_size=batch_size)
|
71 |
+
|
72 |
+
text_embeddings = []
|
73 |
+
|
74 |
+
with torch.no_grad():
|
75 |
+
for batch in dataloader:
|
76 |
+
try:
|
77 |
+
batch = {k: v.to(self.device) for k, v in batch.items()}
|
78 |
+
embeddings = self._encode_text(batch)
|
79 |
+
text_embeddings.extend(embeddings)
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error encoding text batch: {e}")
|
82 |
+
|
83 |
+
return text_embeddings
|
84 |
+
|
85 |
+
def _encode_images(self, batch: Dict) -> List:
|
86 |
+
return self.model.get_image_features(**batch).detach().cpu().numpy().tolist()
|
87 |
+
|
88 |
+
def _encode_text(self, batch: Dict) -> List:
|
89 |
+
return self.model.get_text_features(**batch).detach().cpu().numpy().tolist()
|
test_local.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from app import generate_embeddings # Import the function from app.py
|
2 |
+
|
3 |
+
|
4 |
+
# Test with a text query only
|
5 |
+
result_text = generate_embeddings(input_text="red dress")
|
6 |
+
print("Text Embedding Result:", result_text)
|
7 |
+
|
8 |
+
# Test with an image URL only
|
9 |
+
result_image = generate_embeddings(input_image_url="https://vacier.com/cdn/shop/files/Unisize_Ring_db777381-c510-457f-b8c9-5812665d094b.jpg?v=1731838123&width=1080")
|
10 |
+
print("Image Embedding Result:", result_image)
|
11 |
+
|
12 |
+
# Test with both text and image
|
13 |
+
result_both = generate_embeddings(input_text="red dress", input_image_url="https://vacier.com/cdn/shop/files/Unisize_Ring_db777381-c510-457f-b8c9-5812665d094b.jpg?v=1731838123&width=1080")
|
14 |
+
print("Text and Image Embedding Result:", result_both)
|