Suchinthana commited on
Commit
832d3e4
·
1 Parent(s): 0d03136

UI code added

Browse files
Files changed (2) hide show
  1. app.py +69 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import gradio as gr
4
+ from sklearn.model_selection import train_test_split
5
+ from sklearn.linear_model import LogisticRegression
6
+ from sklearn.metrics import accuracy_score
7
+ import matplotlib.pyplot as plt
8
+
9
+ # Loading the dataset
10
+ df = pd.read_csv('assignment-2-k2461469.csv')
11
+
12
+ # Splitting the data into features and target variable
13
+ X = df[["dirty", "wait", "lastyear", "usa"]]
14
+ y = df["good"]
15
+
16
+ # Splitting the dataset into training and test sets
17
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
18
+
19
+ # Creating and fitting the logistic regression model
20
+ model = LogisticRegression()
21
+ model.fit(X_train, y_train)
22
+
23
+ # Function to make predictions and display them on a graph
24
+ def predict_and_plot(dirty, wait, lastyear, usa):
25
+ # Making prediction for a single input
26
+ input_data = np.array([[dirty, wait, lastyear, usa]])
27
+ predicted_value = model.predict(input_data)[0]
28
+
29
+ # Predicting on test set for comparison
30
+ y_pred = model.predict(X_test)
31
+
32
+ # Plotting actual vs predicted values
33
+ plt.figure(figsize=(8, 6))
34
+ plt.scatter(range(len(y_test)), y_test, color='blue', label='Actual Values', alpha=0.6)
35
+ plt.scatter(range(len(y_pred)), y_pred, color='red', label='Predicted Values', alpha=0.6)
36
+ plt.title('Actual vs Predicted Values')
37
+ plt.xlabel('Sample Index')
38
+ plt.ylabel('Value')
39
+ plt.legend()
40
+ plt.grid(True)
41
+
42
+ # Save plot to a file and display
43
+ plt.savefig('output_plot.png')
44
+ plt.close()
45
+
46
+ return predicted_value, 'output_plot.png'
47
+
48
+ # Creating Gradio UI
49
+ with gr.Blocks() as demo:
50
+ gr.Markdown("# Logistic Regression Prediction")
51
+
52
+ with gr.Row():
53
+ dirty_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Dirty")
54
+ wait_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Wait")
55
+ lastyear_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Last Year")
56
+ usa_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="USA")
57
+
58
+ predict_button = gr.Button("Predict")
59
+
60
+ predicted_value_output = gr.Textbox(label="Predicted Value")
61
+ plot_output = gr.Image(label="Actual vs Predicted Graph")
62
+
63
+ predict_button.click(
64
+ fn=predict_and_plot,
65
+ inputs=[dirty_slider, wait_slider, lastyear_slider, usa_slider],
66
+ outputs=[predicted_value_output, plot_output]
67
+ )
68
+
69
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pandas
2
+ numpy
3
+ gradio
4
+ scikit-learn
5
+ matplotlib