Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create infer.py
Browse files- functions/infer.py +381 -0
functions/infer.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
from pipelines.lcm_single_step_scheduler import LCMSingleStepScheduler
|
8 |
+
|
9 |
+
from diffusers import DDPMScheduler
|
10 |
+
|
11 |
+
from module.ip_adapter.utils import load_adapter_to_pipe
|
12 |
+
from pipelines.sdxl_SAKBIR import SAKBIRPipeline
|
13 |
+
|
14 |
+
|
15 |
+
def name_unet_submodules(unet):
|
16 |
+
def recursive_find_module(name, module, end=False):
|
17 |
+
if end:
|
18 |
+
for sub_name, sub_module in module.named_children():
|
19 |
+
sub_module.full_name = f"{name}.{sub_name}"
|
20 |
+
return
|
21 |
+
if not "up_blocks" in name and not "down_blocks" in name and not "mid_block" in name: return
|
22 |
+
elif "resnets" in name: return
|
23 |
+
for sub_name, sub_module in module.named_children():
|
24 |
+
end = True if sub_name == "transformer_blocks" else False
|
25 |
+
recursive_find_module(f"{name}.{sub_name}", sub_module, end)
|
26 |
+
|
27 |
+
for name, module in unet.named_children():
|
28 |
+
recursive_find_module(name, module)
|
29 |
+
|
30 |
+
|
31 |
+
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
32 |
+
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
|
33 |
+
|
34 |
+
w, h = input_image.size
|
35 |
+
if size is not None:
|
36 |
+
w_resize_new, h_resize_new = size
|
37 |
+
else:
|
38 |
+
# ratio = min_side / min(h, w)
|
39 |
+
# w, h = round(ratio*w), round(ratio*h)
|
40 |
+
ratio = max_side / max(h, w)
|
41 |
+
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
|
42 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
43 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
44 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
45 |
+
|
46 |
+
if pad_to_max_side:
|
47 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
48 |
+
offset_x = (max_side - w_resize_new) // 2
|
49 |
+
offset_y = (max_side - h_resize_new) // 2
|
50 |
+
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
|
51 |
+
input_image = Image.fromarray(res)
|
52 |
+
return input_image
|
53 |
+
|
54 |
+
|
55 |
+
def tensor_to_pil(images):
|
56 |
+
"""
|
57 |
+
Convert image tensor or a batch of image tensors to PIL image(s).
|
58 |
+
"""
|
59 |
+
images = images.clamp(0, 1)
|
60 |
+
images_np = images.detach().cpu().numpy()
|
61 |
+
if images_np.ndim == 4:
|
62 |
+
images_np = np.transpose(images_np, (0, 2, 3, 1))
|
63 |
+
elif images_np.ndim == 3:
|
64 |
+
images_np = np.transpose(images_np, (1, 2, 0))
|
65 |
+
images_np = images_np[None, ...]
|
66 |
+
images_np = (images_np * 255).round().astype("uint8")
|
67 |
+
if images_np.shape[-1] == 1:
|
68 |
+
# special case for grayscale (single channel) images
|
69 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images_np]
|
70 |
+
else:
|
71 |
+
pil_images = [Image.fromarray(image[:, :, :3]) for image in images_np]
|
72 |
+
|
73 |
+
return pil_images
|
74 |
+
|
75 |
+
|
76 |
+
def calc_mean_std(feat, eps=1e-5):
|
77 |
+
"""Calculate mean and std for adaptive_instance_normalization.
|
78 |
+
Args:
|
79 |
+
feat (Tensor): 4D tensor.
|
80 |
+
eps (float): A small value added to the variance to avoid
|
81 |
+
divide-by-zero. Default: 1e-5.
|
82 |
+
"""
|
83 |
+
size = feat.size()
|
84 |
+
assert len(size) == 4, 'The input feature should be 4D tensor.'
|
85 |
+
b, c = size[:2]
|
86 |
+
feat_var = feat.view(b, c, -1).var(dim=2) + eps
|
87 |
+
feat_std = feat_var.sqrt().view(b, c, 1, 1)
|
88 |
+
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
89 |
+
return feat_mean, feat_std
|
90 |
+
|
91 |
+
|
92 |
+
def adaptive_instance_normalization(content_feat, style_feat):
|
93 |
+
size = content_feat.size()
|
94 |
+
style_mean, style_std = calc_mean_std(style_feat)
|
95 |
+
content_mean, content_std = calc_mean_std(content_feat)
|
96 |
+
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
97 |
+
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
98 |
+
|
99 |
+
|
100 |
+
def main(args, device):
|
101 |
+
|
102 |
+
# Load pretrained models.
|
103 |
+
pipe = InstantIRPipeline.from_pretrained(
|
104 |
+
args.sdxl_path,
|
105 |
+
torch_dtype=torch.float16,
|
106 |
+
)
|
107 |
+
|
108 |
+
# Image prompt projector.
|
109 |
+
print("Loading LQ-Adapter...")
|
110 |
+
load_adapter_to_pipe(
|
111 |
+
pipe,
|
112 |
+
args.adapter_model_path if args.adapter_model_path is not None else os.path.join(args.instantir_path, 'adapter.pt'),
|
113 |
+
args.vision_encoder_path,
|
114 |
+
use_clip_encoder=args.use_clip_encoder,
|
115 |
+
)
|
116 |
+
|
117 |
+
# Prepare previewer
|
118 |
+
previewer_lora_path = args.previewer_lora_path if args.previewer_lora_path is not None else args.instantir_path
|
119 |
+
if previewer_lora_path is not None:
|
120 |
+
lora_alpha = pipe.prepare_previewers(previewer_lora_path)
|
121 |
+
print(f"use lora alpha {lora_alpha}")
|
122 |
+
pipe.to(device=device, dtype=torch.float16)
|
123 |
+
pipe.scheduler = DDPMScheduler.from_pretrained(args.sdxl_path, subfolder="scheduler")
|
124 |
+
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
|
125 |
+
|
126 |
+
# Load weights.
|
127 |
+
print("Loading checkpoint...")
|
128 |
+
pretrained_state_dict = torch.load(os.path.join(args.instantir_path, "aggregator.pt"), map_location="cpu")
|
129 |
+
pipe.aggregator.load_state_dict(pretrained_state_dict)
|
130 |
+
pipe.aggregator.to(device, dtype=torch.float16)
|
131 |
+
|
132 |
+
#################### Restoration ####################
|
133 |
+
|
134 |
+
post_fix = f"_{args.post_fix}" if args.post_fix else ""
|
135 |
+
os.makedirs(f"{args.out_path}/{post_fix}", exist_ok=True)
|
136 |
+
|
137 |
+
processed_imgs = os.listdir(os.path.join(args.out_path, post_fix))
|
138 |
+
lq_files = []
|
139 |
+
lq_batch = []
|
140 |
+
if os.path.isfile(args.test_path):
|
141 |
+
all_inputs = [args.test_path.split("/")[-1]]
|
142 |
+
else:
|
143 |
+
all_inputs = os.listdir(args.test_path)
|
144 |
+
all_inputs.sort()
|
145 |
+
for file in all_inputs:
|
146 |
+
if file in processed_imgs:
|
147 |
+
print(f"Skip {file}")
|
148 |
+
continue
|
149 |
+
lq_batch.append(f"{file}")
|
150 |
+
if len(lq_batch) == args.batch_size:
|
151 |
+
lq_files.append(lq_batch)
|
152 |
+
lq_batch = []
|
153 |
+
|
154 |
+
if len(lq_batch) > 0:
|
155 |
+
lq_files.append(lq_batch)
|
156 |
+
|
157 |
+
for lq_batch in lq_files:
|
158 |
+
generator = torch.Generator(device=device).manual_seed(args.seed)
|
159 |
+
pil_lqs = [Image.open(os.path.join(args.test_path, file)) for file in lq_batch]
|
160 |
+
if args.width is None or args.height is None:
|
161 |
+
lq = [resize_img(pil_lq.convert("RGB"), size=None) for pil_lq in pil_lqs]
|
162 |
+
else:
|
163 |
+
lq = [resize_img(pil_lq.convert("RGB"), size=(args.width, args.height)) for pil_lq in pil_lqs]
|
164 |
+
timesteps = None
|
165 |
+
if args.denoising_start < 1000:
|
166 |
+
timesteps = [
|
167 |
+
i * (args.denoising_start//args.num_inference_steps) + pipe.scheduler.config.steps_offset for i in range(0, args.num_inference_steps)
|
168 |
+
]
|
169 |
+
timesteps = timesteps[::-1]
|
170 |
+
pipe.scheduler.set_timesteps(args.num_inference_steps, device)
|
171 |
+
timesteps = pipe.scheduler.timesteps
|
172 |
+
if args.prompt is None or len(args.prompt) == 0:
|
173 |
+
prompt = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \
|
174 |
+
ultra HD, extreme meticulous detailing, skin pore detailing, \
|
175 |
+
hyper sharpness, perfect without deformations, \
|
176 |
+
taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. "
|
177 |
+
else:
|
178 |
+
prompt = args.prompt
|
179 |
+
if not isinstance(prompt, list):
|
180 |
+
prompt = [prompt]
|
181 |
+
prompt = prompt*len(lq)
|
182 |
+
if args.neg_prompt is None or len(args.neg_prompt) == 0:
|
183 |
+
neg_prompt = "blurry, out of focus, unclear, depth of field, over-smooth, \
|
184 |
+
sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \
|
185 |
+
dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \
|
186 |
+
watermark, signature, jpeg artifacts, deformed, lowres"
|
187 |
+
else:
|
188 |
+
neg_prompt = args.neg_prompt
|
189 |
+
if not isinstance(neg_prompt, list):
|
190 |
+
neg_prompt = [neg_prompt]
|
191 |
+
neg_prompt = neg_prompt*len(lq)
|
192 |
+
image = pipe(
|
193 |
+
prompt=prompt,
|
194 |
+
image=lq,
|
195 |
+
num_inference_steps=args.num_inference_steps,
|
196 |
+
generator=generator,
|
197 |
+
timesteps=timesteps,
|
198 |
+
negative_prompt=neg_prompt,
|
199 |
+
guidance_scale=args.cfg,
|
200 |
+
previewer_scheduler=lcm_scheduler,
|
201 |
+
preview_start=args.preview_start,
|
202 |
+
control_guidance_end=args.creative_start,
|
203 |
+
).images
|
204 |
+
|
205 |
+
if args.save_preview_row:
|
206 |
+
for i, lcm_image in enumerate(image[1]):
|
207 |
+
lcm_image.save(f"./lcm/{i}.png")
|
208 |
+
for i, rec_image in enumerate(image):
|
209 |
+
rec_image.save(f"{args.out_path}/{post_fix}/{lq_batch[i]}")
|
210 |
+
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
parser = argparse.ArgumentParser(description="InstantIR pipeline")
|
214 |
+
parser.add_argument(
|
215 |
+
"--sdxl_path",
|
216 |
+
type=str,
|
217 |
+
default=None,
|
218 |
+
required=True,
|
219 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
220 |
+
)
|
221 |
+
parser.add_argument(
|
222 |
+
"--previewer_lora_path",
|
223 |
+
type=str,
|
224 |
+
default=None,
|
225 |
+
help="Path to LCM lora or model identifier from huggingface.co/models.",
|
226 |
+
)
|
227 |
+
parser.add_argument(
|
228 |
+
"--pretrained_vae_model_name_or_path",
|
229 |
+
type=str,
|
230 |
+
default=None,
|
231 |
+
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.",
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--instantir_path",
|
235 |
+
type=str,
|
236 |
+
default=None,
|
237 |
+
required=True,
|
238 |
+
help="Path to pretrained instantir model.",
|
239 |
+
)
|
240 |
+
parser.add_argument(
|
241 |
+
"--vision_encoder_path",
|
242 |
+
type=str,
|
243 |
+
default='/share/huangrenyuan/model_zoo/vis_backbone/dinov2_large',
|
244 |
+
help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.",
|
245 |
+
)
|
246 |
+
parser.add_argument(
|
247 |
+
"--adapter_model_path",
|
248 |
+
type=str,
|
249 |
+
default=None,
|
250 |
+
help="Path to IP-Adapter models or model identifier from huggingface.co/models.",
|
251 |
+
)
|
252 |
+
parser.add_argument(
|
253 |
+
"--adapter_tokens",
|
254 |
+
type=int,
|
255 |
+
default=64,
|
256 |
+
help="Number of tokens to use in IP-adapter cross attention mechanism.",
|
257 |
+
)
|
258 |
+
parser.add_argument(
|
259 |
+
"--use_clip_encoder",
|
260 |
+
action="store_true",
|
261 |
+
help="Whether or not to use DINO as image encoder, else CLIP encoder.",
|
262 |
+
)
|
263 |
+
parser.add_argument(
|
264 |
+
"--denoising_start",
|
265 |
+
type=int,
|
266 |
+
default=1000,
|
267 |
+
help="Diffusion start timestep."
|
268 |
+
)
|
269 |
+
parser.add_argument(
|
270 |
+
"--num_inference_steps",
|
271 |
+
type=int,
|
272 |
+
default=30,
|
273 |
+
help="Diffusion steps."
|
274 |
+
)
|
275 |
+
parser.add_argument(
|
276 |
+
"--creative_start",
|
277 |
+
type=float,
|
278 |
+
default=1.0,
|
279 |
+
help="Proportion of timesteps for creative restoration. 1.0 means no creative restoration while 0.0 means completely free rendering."
|
280 |
+
)
|
281 |
+
parser.add_argument(
|
282 |
+
"--preview_start",
|
283 |
+
type=float,
|
284 |
+
default=0.0,
|
285 |
+
help="Proportion of timesteps to stop previewing at the begining to enhance fidelity to input."
|
286 |
+
)
|
287 |
+
parser.add_argument(
|
288 |
+
"--resolution",
|
289 |
+
type=int,
|
290 |
+
default=1024,
|
291 |
+
help="Number of tokens to use in IP-adapter cross attention mechanism.",
|
292 |
+
)
|
293 |
+
parser.add_argument(
|
294 |
+
"--batch_size",
|
295 |
+
type=int,
|
296 |
+
default=6,
|
297 |
+
help="Test batch size."
|
298 |
+
)
|
299 |
+
parser.add_argument(
|
300 |
+
"--width",
|
301 |
+
type=int,
|
302 |
+
default=None,
|
303 |
+
help="Output image width."
|
304 |
+
)
|
305 |
+
parser.add_argument(
|
306 |
+
"--height",
|
307 |
+
type=int,
|
308 |
+
default=None,
|
309 |
+
help="Output image height."
|
310 |
+
)
|
311 |
+
parser.add_argument(
|
312 |
+
"--cfg",
|
313 |
+
type=float,
|
314 |
+
default=7.0,
|
315 |
+
help="Scale of Classifier-Free-Guidance (CFG).",
|
316 |
+
)
|
317 |
+
parser.add_argument(
|
318 |
+
"--post_fix",
|
319 |
+
type=str,
|
320 |
+
default=None,
|
321 |
+
help="Subfolder name for restoration output under the output directory.",
|
322 |
+
)
|
323 |
+
parser.add_argument(
|
324 |
+
"--variant",
|
325 |
+
type=str,
|
326 |
+
default='fp16',
|
327 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
328 |
+
)
|
329 |
+
parser.add_argument(
|
330 |
+
"--revision",
|
331 |
+
type=str,
|
332 |
+
default=None,
|
333 |
+
required=False,
|
334 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
335 |
+
)
|
336 |
+
parser.add_argument(
|
337 |
+
"--save_preview_row",
|
338 |
+
action="store_true",
|
339 |
+
help="Whether or not to save the intermediate lcm outputs.",
|
340 |
+
)
|
341 |
+
parser.add_argument(
|
342 |
+
"--prompt",
|
343 |
+
type=str,
|
344 |
+
default='',
|
345 |
+
nargs="+",
|
346 |
+
help=(
|
347 |
+
"A set of prompts for creative restoration. Provide either a matching number of test images,"
|
348 |
+
" or a single prompt to be used with all inputs."
|
349 |
+
),
|
350 |
+
)
|
351 |
+
parser.add_argument(
|
352 |
+
"--neg_prompt",
|
353 |
+
type=str,
|
354 |
+
default='',
|
355 |
+
nargs="+",
|
356 |
+
help=(
|
357 |
+
"A set of negative prompts for creative restoration. Provide either a matching number of test images,"
|
358 |
+
" or a single negative prompt to be used with all inputs."
|
359 |
+
),
|
360 |
+
)
|
361 |
+
parser.add_argument(
|
362 |
+
"--test_path",
|
363 |
+
type=str,
|
364 |
+
default=None,
|
365 |
+
required=True,
|
366 |
+
help="Test directory.",
|
367 |
+
)
|
368 |
+
parser.add_argument(
|
369 |
+
"--out_path",
|
370 |
+
type=str,
|
371 |
+
default="./output",
|
372 |
+
help="Output directory.",
|
373 |
+
)
|
374 |
+
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
375 |
+
args = parser.parse_args()
|
376 |
+
args.height = args.height or args.width
|
377 |
+
args.width = args.width or args.height
|
378 |
+
if args.height is not None and (args.width % 64 != 0 or args.height % 64 != 0):
|
379 |
+
raise ValueError("Image resolution must be divisible by 64.")
|
380 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
381 |
+
main(args, device)
|