Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create train_previewer_lora.py
Browse files- functions/train_previewer_lora.py +1712 -0
functions/train_previewer_lora.py
ADDED
@@ -0,0 +1,1712 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2024 The LCM team and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import copy
|
18 |
+
import functools
|
19 |
+
import gc
|
20 |
+
import logging
|
21 |
+
import pyrallis
|
22 |
+
import math
|
23 |
+
import os
|
24 |
+
import random
|
25 |
+
import shutil
|
26 |
+
from contextlib import nullcontext
|
27 |
+
from pathlib import Path
|
28 |
+
|
29 |
+
import accelerate
|
30 |
+
import numpy as np
|
31 |
+
import torch
|
32 |
+
import torch.nn.functional as F
|
33 |
+
import torch.utils.checkpoint
|
34 |
+
import transformers
|
35 |
+
from PIL import Image
|
36 |
+
from accelerate import Accelerator
|
37 |
+
from accelerate.logging import get_logger
|
38 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
39 |
+
from datasets import load_dataset
|
40 |
+
from huggingface_hub import create_repo, upload_folder
|
41 |
+
from packaging import version
|
42 |
+
from collections import namedtuple
|
43 |
+
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
|
44 |
+
from torchvision import transforms
|
45 |
+
from torchvision.transforms.functional import crop
|
46 |
+
from tqdm.auto import tqdm
|
47 |
+
from transformers import (
|
48 |
+
AutoTokenizer,
|
49 |
+
PretrainedConfig,
|
50 |
+
CLIPImageProcessor, CLIPVisionModelWithProjection,
|
51 |
+
AutoImageProcessor, AutoModel
|
52 |
+
)
|
53 |
+
|
54 |
+
import diffusers
|
55 |
+
from diffusers import (
|
56 |
+
AutoencoderKL,
|
57 |
+
DDPMScheduler,
|
58 |
+
LCMScheduler,
|
59 |
+
StableDiffusionXLPipeline,
|
60 |
+
UNet2DConditionModel,
|
61 |
+
)
|
62 |
+
from diffusers.optimization import get_scheduler
|
63 |
+
from diffusers.training_utils import cast_training_params, resolve_interpolation_mode
|
64 |
+
from diffusers.utils import (
|
65 |
+
check_min_version,
|
66 |
+
convert_state_dict_to_diffusers,
|
67 |
+
convert_unet_state_dict_to_peft,
|
68 |
+
is_wandb_available,
|
69 |
+
)
|
70 |
+
from diffusers.utils.import_utils import is_xformers_available
|
71 |
+
from diffusers.utils.torch_utils import is_compiled_module
|
72 |
+
|
73 |
+
from basicsr.utils.degradation_pipeline import RealESRGANDegradation
|
74 |
+
from utils.train_utils import (
|
75 |
+
seperate_ip_params_from_unet,
|
76 |
+
import_model_class_from_model_name_or_path,
|
77 |
+
tensor_to_pil,
|
78 |
+
get_train_dataset, prepare_train_dataset, collate_fn,
|
79 |
+
encode_prompt, importance_sampling_fn, extract_into_tensor
|
80 |
+
|
81 |
+
)
|
82 |
+
from data.data_config import DataConfig
|
83 |
+
from losses.loss_config import LossesConfig
|
84 |
+
from losses.losses import *
|
85 |
+
|
86 |
+
from module.ip_adapter.resampler import Resampler
|
87 |
+
from module.ip_adapter.utils import init_adapter_in_unet, prepare_training_image_embeds
|
88 |
+
|
89 |
+
|
90 |
+
if is_wandb_available():
|
91 |
+
import wandb
|
92 |
+
|
93 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
94 |
+
|
95 |
+
logger = get_logger(__name__)
|
96 |
+
|
97 |
+
|
98 |
+
def prepare_latents(lq, vae, scheduler, generator, timestep):
|
99 |
+
transform = transforms.Compose([
|
100 |
+
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
101 |
+
transforms.CenterCrop(args.resolution),
|
102 |
+
transforms.ToTensor(),
|
103 |
+
])
|
104 |
+
lq_pt = [transform(lq_pil.convert("RGB")) for lq_pil in lq]
|
105 |
+
img_pt = torch.stack(lq_pt).to(vae.device, dtype=vae.dtype)
|
106 |
+
img_pt = img_pt * 2.0 - 1.0
|
107 |
+
with torch.no_grad():
|
108 |
+
latents = vae.encode(img_pt).latent_dist.sample()
|
109 |
+
latents = latents * vae.config.scaling_factor
|
110 |
+
noise = torch.randn(latents.shape, generator=generator, device=vae.device, dtype=vae.dtype, layout=torch.strided).to(vae.device)
|
111 |
+
bsz = latents.shape[0]
|
112 |
+
print(f"init latent at {timestep}")
|
113 |
+
timestep = torch.tensor([timestep]*bsz, device=vae.device, dtype=torch.int64)
|
114 |
+
latents = scheduler.add_noise(latents, noise, timestep)
|
115 |
+
return latents
|
116 |
+
|
117 |
+
|
118 |
+
def log_validation(unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2,
|
119 |
+
scheduler, image_encoder, image_processor,
|
120 |
+
args, accelerator, weight_dtype, step, lq_img=None, gt_img=None, is_final_validation=False, log_local=False):
|
121 |
+
logger.info("Running validation... ")
|
122 |
+
|
123 |
+
image_logs = []
|
124 |
+
|
125 |
+
lq = [Image.open(lq_example) for lq_example in args.validation_image]
|
126 |
+
|
127 |
+
pipe = StableDiffusionXLPipeline(
|
128 |
+
vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2,
|
129 |
+
unet, scheduler, image_encoder, image_processor,
|
130 |
+
).to(accelerator.device)
|
131 |
+
|
132 |
+
timesteps = [args.num_train_timesteps - 1]
|
133 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
134 |
+
latents = prepare_latents(lq, vae, scheduler, generator, timesteps[-1])
|
135 |
+
image = pipe(
|
136 |
+
prompt=[""]*len(lq),
|
137 |
+
ip_adapter_image=[lq],
|
138 |
+
num_inference_steps=1,
|
139 |
+
timesteps=timesteps,
|
140 |
+
generator=generator,
|
141 |
+
guidance_scale=1.0,
|
142 |
+
height=args.resolution,
|
143 |
+
width=args.resolution,
|
144 |
+
latents=latents,
|
145 |
+
).images
|
146 |
+
|
147 |
+
if log_local:
|
148 |
+
# for i, img in enumerate(tensor_to_pil(lq_img)):
|
149 |
+
# img.save(f"./lq_{i}.png")
|
150 |
+
# for i, img in enumerate(tensor_to_pil(gt_img)):
|
151 |
+
# img.save(f"./gt_{i}.png")
|
152 |
+
for i, img in enumerate(image):
|
153 |
+
img.save(f"./lq_IPA_{i}.png")
|
154 |
+
return
|
155 |
+
|
156 |
+
tracker_key = "test" if is_final_validation else "validation"
|
157 |
+
for tracker in accelerator.trackers:
|
158 |
+
if tracker.name == "tensorboard":
|
159 |
+
images = [np.asarray(pil_img) for pil_img in image]
|
160 |
+
images = np.stack(images, axis=0)
|
161 |
+
if lq_img is not None and gt_img is not None:
|
162 |
+
input_lq = lq_img.detach().cpu()
|
163 |
+
input_lq = np.asarray(input_lq.add(1).div(2).clamp(0, 1))
|
164 |
+
input_gt = gt_img.detach().cpu()
|
165 |
+
input_gt = np.asarray(input_gt.add(1).div(2).clamp(0, 1))
|
166 |
+
tracker.writer.add_images("lq", input_lq, step, dataformats="NCHW")
|
167 |
+
tracker.writer.add_images("gt", input_gt, step, dataformats="NCHW")
|
168 |
+
tracker.writer.add_images("rec", images, step, dataformats="NHWC")
|
169 |
+
elif tracker.name == "wandb":
|
170 |
+
raise NotImplementedError("Wandb logging not implemented for validation.")
|
171 |
+
formatted_images = []
|
172 |
+
|
173 |
+
for log in image_logs:
|
174 |
+
images = log["images"]
|
175 |
+
validation_prompt = log["validation_prompt"]
|
176 |
+
validation_image = log["validation_image"]
|
177 |
+
|
178 |
+
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
|
179 |
+
|
180 |
+
for image in images:
|
181 |
+
image = wandb.Image(image, caption=validation_prompt)
|
182 |
+
formatted_images.append(image)
|
183 |
+
|
184 |
+
tracker.log({tracker_key: formatted_images})
|
185 |
+
else:
|
186 |
+
logger.warning(f"image logging not implemented for {tracker.name}")
|
187 |
+
|
188 |
+
gc.collect()
|
189 |
+
torch.cuda.empty_cache()
|
190 |
+
|
191 |
+
return image_logs
|
192 |
+
|
193 |
+
|
194 |
+
class DDIMSolver:
|
195 |
+
def __init__(self, alpha_cumprods, timesteps=1000, ddim_timesteps=50):
|
196 |
+
# DDIM sampling parameters
|
197 |
+
step_ratio = timesteps // ddim_timesteps
|
198 |
+
|
199 |
+
self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1
|
200 |
+
self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
|
201 |
+
self.ddim_alpha_cumprods_prev = np.asarray(
|
202 |
+
[alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
|
203 |
+
)
|
204 |
+
# convert to torch tensors
|
205 |
+
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
|
206 |
+
self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods)
|
207 |
+
self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev)
|
208 |
+
|
209 |
+
def to(self, device):
|
210 |
+
self.ddim_timesteps = self.ddim_timesteps.to(device)
|
211 |
+
self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device)
|
212 |
+
self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device)
|
213 |
+
return self
|
214 |
+
|
215 |
+
def ddim_step(self, pred_x0, pred_noise, timestep_index):
|
216 |
+
alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape)
|
217 |
+
dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise
|
218 |
+
x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt
|
219 |
+
return x_prev
|
220 |
+
|
221 |
+
|
222 |
+
def append_dims(x, target_dims):
|
223 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
224 |
+
dims_to_append = target_dims - x.ndim
|
225 |
+
if dims_to_append < 0:
|
226 |
+
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
|
227 |
+
return x[(...,) + (None,) * dims_to_append]
|
228 |
+
|
229 |
+
|
230 |
+
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
|
231 |
+
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
|
232 |
+
scaled_timestep = timestep_scaling * timestep
|
233 |
+
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
|
234 |
+
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
|
235 |
+
return c_skip, c_out
|
236 |
+
|
237 |
+
|
238 |
+
# Compare LCMScheduler.step, Step 4
|
239 |
+
def get_predicted_original_sample(model_output, timesteps, sample, prediction_type, alphas, sigmas):
|
240 |
+
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
|
241 |
+
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
|
242 |
+
if prediction_type == "epsilon":
|
243 |
+
pred_x_0 = (sample - sigmas * model_output) / alphas
|
244 |
+
elif prediction_type == "sample":
|
245 |
+
pred_x_0 = model_output
|
246 |
+
elif prediction_type == "v_prediction":
|
247 |
+
pred_x_0 = alphas * sample - sigmas * model_output
|
248 |
+
else:
|
249 |
+
raise ValueError(
|
250 |
+
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
|
251 |
+
f" are supported."
|
252 |
+
)
|
253 |
+
|
254 |
+
return pred_x_0
|
255 |
+
|
256 |
+
|
257 |
+
# Based on step 4 in DDIMScheduler.step
|
258 |
+
def get_predicted_noise(model_output, timesteps, sample, prediction_type, alphas, sigmas):
|
259 |
+
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
|
260 |
+
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
|
261 |
+
if prediction_type == "epsilon":
|
262 |
+
pred_epsilon = model_output
|
263 |
+
elif prediction_type == "sample":
|
264 |
+
pred_epsilon = (sample - alphas * model_output) / sigmas
|
265 |
+
elif prediction_type == "v_prediction":
|
266 |
+
pred_epsilon = alphas * model_output + sigmas * sample
|
267 |
+
else:
|
268 |
+
raise ValueError(
|
269 |
+
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
|
270 |
+
f" are supported."
|
271 |
+
)
|
272 |
+
|
273 |
+
return pred_epsilon
|
274 |
+
|
275 |
+
|
276 |
+
def extract_into_tensor(a, t, x_shape):
|
277 |
+
b, *_ = t.shape
|
278 |
+
out = a.gather(-1, t)
|
279 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
280 |
+
|
281 |
+
|
282 |
+
def parse_args():
|
283 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
284 |
+
# ----------Model Checkpoint Loading Arguments----------
|
285 |
+
parser.add_argument(
|
286 |
+
"--pretrained_model_name_or_path",
|
287 |
+
type=str,
|
288 |
+
default=None,
|
289 |
+
required=True,
|
290 |
+
help="Path to pretrained LDM teacher model or model identifier from huggingface.co/models.",
|
291 |
+
)
|
292 |
+
parser.add_argument(
|
293 |
+
"--pretrained_vae_model_name_or_path",
|
294 |
+
type=str,
|
295 |
+
default=None,
|
296 |
+
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
|
297 |
+
)
|
298 |
+
parser.add_argument(
|
299 |
+
"--teacher_revision",
|
300 |
+
type=str,
|
301 |
+
default=None,
|
302 |
+
required=False,
|
303 |
+
help="Revision of pretrained LDM teacher model identifier from huggingface.co/models.",
|
304 |
+
)
|
305 |
+
parser.add_argument(
|
306 |
+
"--revision",
|
307 |
+
type=str,
|
308 |
+
default=None,
|
309 |
+
required=False,
|
310 |
+
help="Revision of pretrained LDM model identifier from huggingface.co/models.",
|
311 |
+
)
|
312 |
+
parser.add_argument(
|
313 |
+
"--pretrained_lcm_lora_path",
|
314 |
+
type=str,
|
315 |
+
default=None,
|
316 |
+
help="Path to LCM lora or model identifier from huggingface.co/models.",
|
317 |
+
)
|
318 |
+
parser.add_argument(
|
319 |
+
"--feature_extractor_path",
|
320 |
+
type=str,
|
321 |
+
default=None,
|
322 |
+
help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.",
|
323 |
+
)
|
324 |
+
parser.add_argument(
|
325 |
+
"--pretrained_adapter_model_path",
|
326 |
+
type=str,
|
327 |
+
default=None,
|
328 |
+
help="Path to IP-Adapter models or model identifier from huggingface.co/models.",
|
329 |
+
)
|
330 |
+
parser.add_argument(
|
331 |
+
"--adapter_tokens",
|
332 |
+
type=int,
|
333 |
+
default=64,
|
334 |
+
help="Number of tokens to use in IP-adapter cross attention mechanism.",
|
335 |
+
)
|
336 |
+
parser.add_argument(
|
337 |
+
"--use_clip_encoder",
|
338 |
+
action="store_true",
|
339 |
+
help="Whether or not to use DINO as image encoder, else CLIP encoder.",
|
340 |
+
)
|
341 |
+
parser.add_argument(
|
342 |
+
"--image_encoder_hidden_feature",
|
343 |
+
action="store_true",
|
344 |
+
help="Whether or not to use the penultimate hidden states as image embeddings.",
|
345 |
+
)
|
346 |
+
# ----------Training Arguments----------
|
347 |
+
# ----General Training Arguments----
|
348 |
+
parser.add_argument(
|
349 |
+
"--output_dir",
|
350 |
+
type=str,
|
351 |
+
default="lcm-xl-distilled",
|
352 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
353 |
+
)
|
354 |
+
parser.add_argument(
|
355 |
+
"--cache_dir",
|
356 |
+
type=str,
|
357 |
+
default=None,
|
358 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
359 |
+
)
|
360 |
+
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
361 |
+
# ----Logging----
|
362 |
+
parser.add_argument(
|
363 |
+
"--logging_dir",
|
364 |
+
type=str,
|
365 |
+
default="logs",
|
366 |
+
help=(
|
367 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
368 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
369 |
+
),
|
370 |
+
)
|
371 |
+
parser.add_argument(
|
372 |
+
"--report_to",
|
373 |
+
type=str,
|
374 |
+
default="tensorboard",
|
375 |
+
help=(
|
376 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
377 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
378 |
+
),
|
379 |
+
)
|
380 |
+
# ----Checkpointing----
|
381 |
+
parser.add_argument(
|
382 |
+
"--checkpointing_steps",
|
383 |
+
type=int,
|
384 |
+
default=4000,
|
385 |
+
help=(
|
386 |
+
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
|
387 |
+
" training using `--resume_from_checkpoint`."
|
388 |
+
),
|
389 |
+
)
|
390 |
+
parser.add_argument(
|
391 |
+
"--checkpoints_total_limit",
|
392 |
+
type=int,
|
393 |
+
default=5,
|
394 |
+
help=("Max number of checkpoints to store."),
|
395 |
+
)
|
396 |
+
parser.add_argument(
|
397 |
+
"--resume_from_checkpoint",
|
398 |
+
type=str,
|
399 |
+
default=None,
|
400 |
+
help=(
|
401 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
402 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
403 |
+
),
|
404 |
+
)
|
405 |
+
parser.add_argument(
|
406 |
+
"--save_only_adapter",
|
407 |
+
action="store_true",
|
408 |
+
help="Only save extra adapter to save space.",
|
409 |
+
)
|
410 |
+
# ----Image Processing----
|
411 |
+
parser.add_argument(
|
412 |
+
"--data_config_path",
|
413 |
+
type=str,
|
414 |
+
default=None,
|
415 |
+
help=("A folder containing the training data. "),
|
416 |
+
)
|
417 |
+
parser.add_argument(
|
418 |
+
"--train_data_dir",
|
419 |
+
type=str,
|
420 |
+
default=None,
|
421 |
+
help=(
|
422 |
+
"A folder containing the training data. Folder contents must follow the structure described in"
|
423 |
+
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
424 |
+
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
425 |
+
),
|
426 |
+
)
|
427 |
+
parser.add_argument(
|
428 |
+
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
|
429 |
+
)
|
430 |
+
parser.add_argument(
|
431 |
+
"--conditioning_image_column",
|
432 |
+
type=str,
|
433 |
+
default="conditioning_image",
|
434 |
+
help="The column of the dataset containing the controlnet conditioning image.",
|
435 |
+
)
|
436 |
+
parser.add_argument(
|
437 |
+
"--caption_column",
|
438 |
+
type=str,
|
439 |
+
default="text",
|
440 |
+
help="The column of the dataset containing a caption or a list of captions.",
|
441 |
+
)
|
442 |
+
parser.add_argument(
|
443 |
+
"--text_drop_rate",
|
444 |
+
type=float,
|
445 |
+
default=0,
|
446 |
+
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
|
447 |
+
)
|
448 |
+
parser.add_argument(
|
449 |
+
"--image_drop_rate",
|
450 |
+
type=float,
|
451 |
+
default=0,
|
452 |
+
help="Proportion of IP-Adapter inputs to be dropped. Defaults to 0 (no drop-out).",
|
453 |
+
)
|
454 |
+
parser.add_argument(
|
455 |
+
"--cond_drop_rate",
|
456 |
+
type=float,
|
457 |
+
default=0,
|
458 |
+
help="Proportion of all conditions to be dropped. Defaults to 0 (no drop-out).",
|
459 |
+
)
|
460 |
+
parser.add_argument(
|
461 |
+
"--resolution",
|
462 |
+
type=int,
|
463 |
+
default=1024,
|
464 |
+
help=(
|
465 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
466 |
+
" resolution"
|
467 |
+
),
|
468 |
+
)
|
469 |
+
parser.add_argument(
|
470 |
+
"--interpolation_type",
|
471 |
+
type=str,
|
472 |
+
default="bilinear",
|
473 |
+
help=(
|
474 |
+
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
|
475 |
+
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
|
476 |
+
),
|
477 |
+
)
|
478 |
+
parser.add_argument(
|
479 |
+
"--center_crop",
|
480 |
+
default=False,
|
481 |
+
action="store_true",
|
482 |
+
help=(
|
483 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
484 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
485 |
+
),
|
486 |
+
)
|
487 |
+
parser.add_argument(
|
488 |
+
"--random_flip",
|
489 |
+
action="store_true",
|
490 |
+
help="whether to randomly flip images horizontally",
|
491 |
+
)
|
492 |
+
parser.add_argument(
|
493 |
+
"--encode_batch_size",
|
494 |
+
type=int,
|
495 |
+
default=8,
|
496 |
+
help="Batch size to use for VAE encoding of the images for efficient processing.",
|
497 |
+
)
|
498 |
+
# ----Dataloader----
|
499 |
+
parser.add_argument(
|
500 |
+
"--dataloader_num_workers",
|
501 |
+
type=int,
|
502 |
+
default=0,
|
503 |
+
help=(
|
504 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
505 |
+
),
|
506 |
+
)
|
507 |
+
# ----Batch Size and Training Steps----
|
508 |
+
parser.add_argument(
|
509 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
510 |
+
)
|
511 |
+
parser.add_argument("--num_train_epochs", type=int, default=100)
|
512 |
+
parser.add_argument(
|
513 |
+
"--max_train_steps",
|
514 |
+
type=int,
|
515 |
+
default=None,
|
516 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
517 |
+
)
|
518 |
+
parser.add_argument(
|
519 |
+
"--max_train_samples",
|
520 |
+
type=int,
|
521 |
+
default=None,
|
522 |
+
help=(
|
523 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
524 |
+
"value if set."
|
525 |
+
),
|
526 |
+
)
|
527 |
+
# ----Learning Rate----
|
528 |
+
parser.add_argument(
|
529 |
+
"--learning_rate",
|
530 |
+
type=float,
|
531 |
+
default=1e-6,
|
532 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
533 |
+
)
|
534 |
+
parser.add_argument(
|
535 |
+
"--scale_lr",
|
536 |
+
action="store_true",
|
537 |
+
default=False,
|
538 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
539 |
+
)
|
540 |
+
parser.add_argument(
|
541 |
+
"--lr_scheduler",
|
542 |
+
type=str,
|
543 |
+
default="constant",
|
544 |
+
help=(
|
545 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
546 |
+
' "constant", "constant_with_warmup"]'
|
547 |
+
),
|
548 |
+
)
|
549 |
+
parser.add_argument(
|
550 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
551 |
+
)
|
552 |
+
parser.add_argument(
|
553 |
+
"--lr_num_cycles",
|
554 |
+
type=int,
|
555 |
+
default=1,
|
556 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
557 |
+
)
|
558 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
559 |
+
parser.add_argument(
|
560 |
+
"--gradient_accumulation_steps",
|
561 |
+
type=int,
|
562 |
+
default=1,
|
563 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
564 |
+
)
|
565 |
+
# ----Optimizer (Adam)----
|
566 |
+
parser.add_argument(
|
567 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
568 |
+
)
|
569 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
570 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
571 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
572 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
573 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
574 |
+
# ----Diffusion Training Arguments----
|
575 |
+
# ----Latent Consistency Distillation (LCD) Specific Arguments----
|
576 |
+
parser.add_argument(
|
577 |
+
"--w_min",
|
578 |
+
type=float,
|
579 |
+
default=3.0,
|
580 |
+
required=False,
|
581 |
+
help=(
|
582 |
+
"The minimum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG"
|
583 |
+
" formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as"
|
584 |
+
" compared to the original paper."
|
585 |
+
),
|
586 |
+
)
|
587 |
+
parser.add_argument(
|
588 |
+
"--w_max",
|
589 |
+
type=float,
|
590 |
+
default=15.0,
|
591 |
+
required=False,
|
592 |
+
help=(
|
593 |
+
"The maximum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG"
|
594 |
+
" formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as"
|
595 |
+
" compared to the original paper."
|
596 |
+
),
|
597 |
+
)
|
598 |
+
parser.add_argument(
|
599 |
+
"--num_train_timesteps",
|
600 |
+
type=int,
|
601 |
+
default=1000,
|
602 |
+
help="The number of timesteps to use for DDIM sampling.",
|
603 |
+
)
|
604 |
+
parser.add_argument(
|
605 |
+
"--num_ddim_timesteps",
|
606 |
+
type=int,
|
607 |
+
default=50,
|
608 |
+
help="The number of timesteps to use for DDIM sampling.",
|
609 |
+
)
|
610 |
+
parser.add_argument(
|
611 |
+
"--losses_config_path",
|
612 |
+
type=str,
|
613 |
+
default='config_files/losses.yaml',
|
614 |
+
required=True,
|
615 |
+
help=("A yaml file containing losses to use and their weights."),
|
616 |
+
)
|
617 |
+
parser.add_argument(
|
618 |
+
"--loss_type",
|
619 |
+
type=str,
|
620 |
+
default="l2",
|
621 |
+
choices=["l2", "huber"],
|
622 |
+
help="The type of loss to use for the LCD loss.",
|
623 |
+
)
|
624 |
+
parser.add_argument(
|
625 |
+
"--huber_c",
|
626 |
+
type=float,
|
627 |
+
default=0.001,
|
628 |
+
help="The huber loss parameter. Only used if `--loss_type=huber`.",
|
629 |
+
)
|
630 |
+
parser.add_argument(
|
631 |
+
"--lora_rank",
|
632 |
+
type=int,
|
633 |
+
default=64,
|
634 |
+
help="The rank of the LoRA projection matrix.",
|
635 |
+
)
|
636 |
+
parser.add_argument(
|
637 |
+
"--lora_alpha",
|
638 |
+
type=int,
|
639 |
+
default=64,
|
640 |
+
help=(
|
641 |
+
"The value of the LoRA alpha parameter, which controls the scaling factor in front of the LoRA weight"
|
642 |
+
" update delta_W. No scaling will be performed if this value is equal to `lora_rank`."
|
643 |
+
),
|
644 |
+
)
|
645 |
+
parser.add_argument(
|
646 |
+
"--lora_dropout",
|
647 |
+
type=float,
|
648 |
+
default=0.0,
|
649 |
+
help="The dropout probability for the dropout layer added before applying the LoRA to each layer input.",
|
650 |
+
)
|
651 |
+
parser.add_argument(
|
652 |
+
"--lora_target_modules",
|
653 |
+
type=str,
|
654 |
+
default=None,
|
655 |
+
help=(
|
656 |
+
"A comma-separated string of target module keys to add LoRA to. If not set, a default list of modules will"
|
657 |
+
" be used. By default, LoRA will be applied to all conv and linear layers."
|
658 |
+
),
|
659 |
+
)
|
660 |
+
parser.add_argument(
|
661 |
+
"--vae_encode_batch_size",
|
662 |
+
type=int,
|
663 |
+
default=8,
|
664 |
+
required=False,
|
665 |
+
help=(
|
666 |
+
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE."
|
667 |
+
" Encoding or decoding the whole batch at once may run into OOM issues."
|
668 |
+
),
|
669 |
+
)
|
670 |
+
parser.add_argument(
|
671 |
+
"--timestep_scaling_factor",
|
672 |
+
type=float,
|
673 |
+
default=10.0,
|
674 |
+
help=(
|
675 |
+
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The"
|
676 |
+
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically"
|
677 |
+
" suffice."
|
678 |
+
),
|
679 |
+
)
|
680 |
+
# ----Mixed Precision----
|
681 |
+
parser.add_argument(
|
682 |
+
"--mixed_precision",
|
683 |
+
type=str,
|
684 |
+
default=None,
|
685 |
+
choices=["no", "fp16", "bf16"],
|
686 |
+
help=(
|
687 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
688 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
689 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
690 |
+
),
|
691 |
+
)
|
692 |
+
parser.add_argument(
|
693 |
+
"--allow_tf32",
|
694 |
+
action="store_true",
|
695 |
+
help=(
|
696 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
697 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
698 |
+
),
|
699 |
+
)
|
700 |
+
# ----Training Optimizations----
|
701 |
+
parser.add_argument(
|
702 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
703 |
+
)
|
704 |
+
parser.add_argument(
|
705 |
+
"--gradient_checkpointing",
|
706 |
+
action="store_true",
|
707 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
708 |
+
)
|
709 |
+
# ----Distributed Training----
|
710 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
711 |
+
# ----------Validation Arguments----------
|
712 |
+
parser.add_argument(
|
713 |
+
"--validation_steps",
|
714 |
+
type=int,
|
715 |
+
default=3000,
|
716 |
+
help="Run validation every X steps.",
|
717 |
+
)
|
718 |
+
parser.add_argument(
|
719 |
+
"--validation_image",
|
720 |
+
type=str,
|
721 |
+
default=None,
|
722 |
+
nargs="+",
|
723 |
+
help=(
|
724 |
+
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
|
725 |
+
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
|
726 |
+
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
|
727 |
+
" `--validation_image` that will be used with all `--validation_prompt`s."
|
728 |
+
),
|
729 |
+
)
|
730 |
+
parser.add_argument(
|
731 |
+
"--validation_prompt",
|
732 |
+
type=str,
|
733 |
+
default=None,
|
734 |
+
nargs="+",
|
735 |
+
help=(
|
736 |
+
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
|
737 |
+
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
|
738 |
+
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
|
739 |
+
),
|
740 |
+
)
|
741 |
+
parser.add_argument(
|
742 |
+
"--sanity_check",
|
743 |
+
action="store_true",
|
744 |
+
help=(
|
745 |
+
"sanity check"
|
746 |
+
),
|
747 |
+
)
|
748 |
+
# ----------Huggingface Hub Arguments-----------
|
749 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
750 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
751 |
+
parser.add_argument(
|
752 |
+
"--hub_model_id",
|
753 |
+
type=str,
|
754 |
+
default=None,
|
755 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
756 |
+
)
|
757 |
+
# ----------Accelerate Arguments----------
|
758 |
+
parser.add_argument(
|
759 |
+
"--tracker_project_name",
|
760 |
+
type=str,
|
761 |
+
default="trian",
|
762 |
+
help=(
|
763 |
+
"The `project_name` argument passed to Accelerator.init_trackers for"
|
764 |
+
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
|
765 |
+
),
|
766 |
+
)
|
767 |
+
|
768 |
+
args = parser.parse_args()
|
769 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
770 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
771 |
+
args.local_rank = env_local_rank
|
772 |
+
|
773 |
+
return args
|
774 |
+
|
775 |
+
|
776 |
+
def main(args):
|
777 |
+
if args.report_to == "wandb" and args.hub_token is not None:
|
778 |
+
raise ValueError(
|
779 |
+
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
780 |
+
" Please use `huggingface-cli login` to authenticate with the Hub."
|
781 |
+
)
|
782 |
+
|
783 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
784 |
+
|
785 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
786 |
+
|
787 |
+
accelerator = Accelerator(
|
788 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
789 |
+
mixed_precision=args.mixed_precision,
|
790 |
+
log_with=args.report_to,
|
791 |
+
project_config=accelerator_project_config,
|
792 |
+
)
|
793 |
+
|
794 |
+
# Make one log on every process with the configuration for debugging.
|
795 |
+
logging.basicConfig(
|
796 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
797 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
798 |
+
level=logging.INFO,
|
799 |
+
)
|
800 |
+
logger.info(accelerator.state, main_process_only=False)
|
801 |
+
if accelerator.is_local_main_process:
|
802 |
+
transformers.utils.logging.set_verbosity_warning()
|
803 |
+
diffusers.utils.logging.set_verbosity_info()
|
804 |
+
else:
|
805 |
+
transformers.utils.logging.set_verbosity_error()
|
806 |
+
diffusers.utils.logging.set_verbosity_error()
|
807 |
+
|
808 |
+
# If passed along, set the training seed now.
|
809 |
+
if args.seed is not None:
|
810 |
+
set_seed(args.seed)
|
811 |
+
|
812 |
+
# Handle the repository creation.
|
813 |
+
if accelerator.is_main_process:
|
814 |
+
if args.output_dir is not None:
|
815 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
816 |
+
|
817 |
+
# 1. Create the noise scheduler and the desired noise schedule.
|
818 |
+
noise_scheduler = DDPMScheduler.from_pretrained(
|
819 |
+
args.pretrained_model_name_or_path, subfolder="scheduler", revision=args.teacher_revision
|
820 |
+
)
|
821 |
+
noise_scheduler.config.num_train_timesteps = args.num_train_timesteps
|
822 |
+
lcm_scheduler = LCMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
823 |
+
|
824 |
+
# DDPMScheduler calculates the alpha and sigma noise schedules (based on the alpha bars) for us
|
825 |
+
alpha_schedule = torch.sqrt(noise_scheduler.alphas_cumprod)
|
826 |
+
sigma_schedule = torch.sqrt(1 - noise_scheduler.alphas_cumprod)
|
827 |
+
# Initialize the DDIM ODE solver for distillation.
|
828 |
+
solver = DDIMSolver(
|
829 |
+
noise_scheduler.alphas_cumprod.numpy(),
|
830 |
+
timesteps=noise_scheduler.config.num_train_timesteps,
|
831 |
+
ddim_timesteps=args.num_ddim_timesteps,
|
832 |
+
)
|
833 |
+
|
834 |
+
# 2. Load tokenizers from SDXL checkpoint.
|
835 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
836 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.teacher_revision, use_fast=False
|
837 |
+
)
|
838 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
839 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.teacher_revision, use_fast=False
|
840 |
+
)
|
841 |
+
|
842 |
+
# 3. Load text encoders from SDXL checkpoint.
|
843 |
+
# import correct text encoder classes
|
844 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(
|
845 |
+
args.pretrained_model_name_or_path, args.teacher_revision
|
846 |
+
)
|
847 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(
|
848 |
+
args.pretrained_model_name_or_path, args.teacher_revision, subfolder="text_encoder_2"
|
849 |
+
)
|
850 |
+
|
851 |
+
text_encoder_one = text_encoder_cls_one.from_pretrained(
|
852 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.teacher_revision
|
853 |
+
)
|
854 |
+
text_encoder_two = text_encoder_cls_two.from_pretrained(
|
855 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.teacher_revision
|
856 |
+
)
|
857 |
+
|
858 |
+
if args.use_clip_encoder:
|
859 |
+
image_processor = CLIPImageProcessor()
|
860 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.feature_extractor_path)
|
861 |
+
else:
|
862 |
+
image_processor = AutoImageProcessor.from_pretrained(args.feature_extractor_path)
|
863 |
+
image_encoder = AutoModel.from_pretrained(args.feature_extractor_path)
|
864 |
+
|
865 |
+
# 4. Load VAE from SDXL checkpoint (or more stable VAE)
|
866 |
+
vae_path = (
|
867 |
+
args.pretrained_model_name_or_path
|
868 |
+
if args.pretrained_vae_model_name_or_path is None
|
869 |
+
else args.pretrained_vae_model_name_or_path
|
870 |
+
)
|
871 |
+
vae = AutoencoderKL.from_pretrained(
|
872 |
+
vae_path,
|
873 |
+
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
|
874 |
+
revision=args.teacher_revision,
|
875 |
+
)
|
876 |
+
|
877 |
+
# 7. Create online student U-Net.
|
878 |
+
unet = UNet2DConditionModel.from_pretrained(
|
879 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.teacher_revision
|
880 |
+
)
|
881 |
+
|
882 |
+
# Resampler for project model in IP-Adapter
|
883 |
+
image_proj_model = Resampler(
|
884 |
+
dim=1280,
|
885 |
+
depth=4,
|
886 |
+
dim_head=64,
|
887 |
+
heads=20,
|
888 |
+
num_queries=args.adapter_tokens,
|
889 |
+
embedding_dim=image_encoder.config.hidden_size,
|
890 |
+
output_dim=unet.config.cross_attention_dim,
|
891 |
+
ff_mult=4
|
892 |
+
)
|
893 |
+
|
894 |
+
# Load the same adapter in both unet.
|
895 |
+
init_adapter_in_unet(
|
896 |
+
unet,
|
897 |
+
image_proj_model,
|
898 |
+
os.path.join(args.pretrained_adapter_model_path, 'adapter_ckpt.pt'),
|
899 |
+
adapter_tokens=args.adapter_tokens,
|
900 |
+
)
|
901 |
+
|
902 |
+
# Check that all trainable models are in full precision
|
903 |
+
low_precision_error_string = (
|
904 |
+
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
|
905 |
+
" doing mixed precision training, copy of the weights should still be float32."
|
906 |
+
)
|
907 |
+
|
908 |
+
def unwrap_model(model):
|
909 |
+
model = accelerator.unwrap_model(model)
|
910 |
+
model = model._orig_mod if is_compiled_module(model) else model
|
911 |
+
return model
|
912 |
+
|
913 |
+
if unwrap_model(unet).dtype != torch.float32:
|
914 |
+
raise ValueError(
|
915 |
+
f"Controlnet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}"
|
916 |
+
)
|
917 |
+
|
918 |
+
if args.pretrained_lcm_lora_path is not None:
|
919 |
+
lora_state_dict, alpha_dict = StableDiffusionXLPipeline.lora_state_dict(args.pretrained_lcm_lora_path)
|
920 |
+
unet_state_dict = {
|
921 |
+
f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")
|
922 |
+
}
|
923 |
+
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
|
924 |
+
lora_state_dict = dict()
|
925 |
+
for k, v in unet_state_dict.items():
|
926 |
+
if "ip" in k:
|
927 |
+
k = k.replace("attn2", "attn2.processor")
|
928 |
+
lora_state_dict[k] = v
|
929 |
+
else:
|
930 |
+
lora_state_dict[k] = v
|
931 |
+
if alpha_dict:
|
932 |
+
args.lora_alpha = next(iter(alpha_dict.values()))
|
933 |
+
else:
|
934 |
+
args.lora_alpha = 1
|
935 |
+
# 9. Add LoRA to the student U-Net, only the LoRA projection matrix will be updated by the optimizer.
|
936 |
+
if args.lora_target_modules is not None:
|
937 |
+
lora_target_modules = [module_key.strip() for module_key in args.lora_target_modules.split(",")]
|
938 |
+
else:
|
939 |
+
lora_target_modules = [
|
940 |
+
"to_q",
|
941 |
+
"to_kv",
|
942 |
+
"0.to_out",
|
943 |
+
"attn1.to_k",
|
944 |
+
"attn1.to_v",
|
945 |
+
"to_k_ip",
|
946 |
+
"to_v_ip",
|
947 |
+
"ln_k_ip.linear",
|
948 |
+
"ln_v_ip.linear",
|
949 |
+
"to_out.0",
|
950 |
+
"proj_in",
|
951 |
+
"proj_out",
|
952 |
+
"ff.net.0.proj",
|
953 |
+
"ff.net.2",
|
954 |
+
"conv1",
|
955 |
+
"conv2",
|
956 |
+
"conv_shortcut",
|
957 |
+
"downsamplers.0.conv",
|
958 |
+
"upsamplers.0.conv",
|
959 |
+
"time_emb_proj",
|
960 |
+
]
|
961 |
+
lora_config = LoraConfig(
|
962 |
+
r=args.lora_rank,
|
963 |
+
target_modules=lora_target_modules,
|
964 |
+
lora_alpha=args.lora_alpha,
|
965 |
+
lora_dropout=args.lora_dropout,
|
966 |
+
)
|
967 |
+
|
968 |
+
# Legacy
|
969 |
+
# for k, v in lcm_pipe.unet.state_dict().items():
|
970 |
+
# if "lora" in k or "base_layer" in k:
|
971 |
+
# lcm_dict[k.replace("default_0", "default")] = v
|
972 |
+
|
973 |
+
unet.add_adapter(lora_config)
|
974 |
+
if args.pretrained_lcm_lora_path is not None:
|
975 |
+
incompatible_keys = set_peft_model_state_dict(unet, lora_state_dict, adapter_name="default")
|
976 |
+
if incompatible_keys is not None:
|
977 |
+
# check only for unexpected keys
|
978 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
979 |
+
if unexpected_keys:
|
980 |
+
logger.warning(
|
981 |
+
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
982 |
+
f" {unexpected_keys}. "
|
983 |
+
)
|
984 |
+
|
985 |
+
# 6. Freeze unet, vae, text_encoders.
|
986 |
+
vae.requires_grad_(False)
|
987 |
+
text_encoder_one.requires_grad_(False)
|
988 |
+
text_encoder_two.requires_grad_(False)
|
989 |
+
image_encoder.requires_grad_(False)
|
990 |
+
unet.requires_grad_(False)
|
991 |
+
|
992 |
+
# 10. Handle saving and loading of checkpoints
|
993 |
+
# `accelerate` 0.16.0 will have better support for customized saving
|
994 |
+
if args.save_only_adapter:
|
995 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
996 |
+
def save_model_hook(models, weights, output_dir):
|
997 |
+
if accelerator.is_main_process:
|
998 |
+
for model in models:
|
999 |
+
if isinstance(model, type(unwrap_model(unet))): # save adapter only
|
1000 |
+
unet_ = unwrap_model(model)
|
1001 |
+
# also save the checkpoints in native `diffusers` format so that it can be easily
|
1002 |
+
# be independently loaded via `load_lora_weights()`.
|
1003 |
+
state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet_))
|
1004 |
+
StableDiffusionXLPipeline.save_lora_weights(output_dir, unet_lora_layers=state_dict, safe_serialization=False)
|
1005 |
+
|
1006 |
+
weights.pop()
|
1007 |
+
|
1008 |
+
def load_model_hook(models, input_dir):
|
1009 |
+
|
1010 |
+
while len(models) > 0:
|
1011 |
+
# pop models so that they are not loaded again
|
1012 |
+
model = models.pop()
|
1013 |
+
|
1014 |
+
if isinstance(model, type(unwrap_model(unet))):
|
1015 |
+
unet_ = unwrap_model(model)
|
1016 |
+
lora_state_dict, _ = StableDiffusionXLPipeline.lora_state_dict(input_dir)
|
1017 |
+
unet_state_dict = {
|
1018 |
+
f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")
|
1019 |
+
}
|
1020 |
+
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
|
1021 |
+
lora_state_dict = dict()
|
1022 |
+
for k, v in unet_state_dict.items():
|
1023 |
+
if "ip" in k:
|
1024 |
+
k = k.replace("attn2", "attn2.processor")
|
1025 |
+
lora_state_dict[k] = v
|
1026 |
+
else:
|
1027 |
+
lora_state_dict[k] = v
|
1028 |
+
incompatible_keys = set_peft_model_state_dict(unet_, lora_state_dict, adapter_name="default")
|
1029 |
+
if incompatible_keys is not None:
|
1030 |
+
# check only for unexpected keys
|
1031 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
1032 |
+
if unexpected_keys:
|
1033 |
+
logger.warning(
|
1034 |
+
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
1035 |
+
f" {unexpected_keys}. "
|
1036 |
+
)
|
1037 |
+
|
1038 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
1039 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
1040 |
+
|
1041 |
+
# 11. Enable optimizations
|
1042 |
+
if args.enable_xformers_memory_efficient_attention:
|
1043 |
+
if is_xformers_available():
|
1044 |
+
import xformers
|
1045 |
+
|
1046 |
+
xformers_version = version.parse(xformers.__version__)
|
1047 |
+
if xformers_version == version.parse("0.0.16"):
|
1048 |
+
logger.warning(
|
1049 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
1050 |
+
)
|
1051 |
+
unet.enable_xformers_memory_efficient_attention()
|
1052 |
+
else:
|
1053 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
1054 |
+
|
1055 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
1056 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
1057 |
+
if args.allow_tf32:
|
1058 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
1059 |
+
|
1060 |
+
if args.gradient_checkpointing:
|
1061 |
+
unet.enable_gradient_checkpointing()
|
1062 |
+
vae.enable_gradient_checkpointing()
|
1063 |
+
|
1064 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
1065 |
+
if args.use_8bit_adam:
|
1066 |
+
try:
|
1067 |
+
import bitsandbytes as bnb
|
1068 |
+
except ImportError:
|
1069 |
+
raise ImportError(
|
1070 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
optimizer_class = bnb.optim.AdamW8bit
|
1074 |
+
else:
|
1075 |
+
optimizer_class = torch.optim.AdamW
|
1076 |
+
|
1077 |
+
# 12. Optimizer creation
|
1078 |
+
lora_params, non_lora_params = seperate_lora_params_from_unet(unet)
|
1079 |
+
params_to_optimize = lora_params
|
1080 |
+
optimizer = optimizer_class(
|
1081 |
+
params_to_optimize,
|
1082 |
+
lr=args.learning_rate,
|
1083 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
1084 |
+
weight_decay=args.adam_weight_decay,
|
1085 |
+
eps=args.adam_epsilon,
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
# 13. Dataset creation and data processing
|
1089 |
+
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
1090 |
+
# download the dataset.
|
1091 |
+
datasets = []
|
1092 |
+
datasets_name = []
|
1093 |
+
datasets_weights = []
|
1094 |
+
deg_pipeline = RealESRGANDegradation(device=accelerator.device, resolution=args.resolution)
|
1095 |
+
if args.data_config_path is not None:
|
1096 |
+
data_config: DataConfig = pyrallis.load(DataConfig, open(args.data_config_path, "r"))
|
1097 |
+
for single_dataset in data_config.datasets:
|
1098 |
+
datasets_weights.append(single_dataset.dataset_weight)
|
1099 |
+
datasets_name.append(single_dataset.dataset_folder)
|
1100 |
+
dataset_dir = os.path.join(args.train_data_dir, single_dataset.dataset_folder)
|
1101 |
+
image_dataset = get_train_dataset(dataset_dir, dataset_dir, args, accelerator)
|
1102 |
+
image_dataset = prepare_train_dataset(image_dataset, accelerator, deg_pipeline)
|
1103 |
+
datasets.append(image_dataset)
|
1104 |
+
# TODO: Validation dataset
|
1105 |
+
if data_config.val_dataset is not None:
|
1106 |
+
val_dataset = get_train_dataset(dataset_name, dataset_dir, args, accelerator)
|
1107 |
+
logger.info(f"Datasets mixing: {list(zip(datasets_name, datasets_weights))}")
|
1108 |
+
|
1109 |
+
# Mix training datasets.
|
1110 |
+
sampler_train = None
|
1111 |
+
if len(datasets) == 1:
|
1112 |
+
train_dataset = datasets[0]
|
1113 |
+
else:
|
1114 |
+
# Weighted each dataset
|
1115 |
+
train_dataset = torch.utils.data.ConcatDataset(datasets)
|
1116 |
+
dataset_weights = []
|
1117 |
+
for single_dataset, single_weight in zip(datasets, datasets_weights):
|
1118 |
+
dataset_weights.extend([len(train_dataset) / len(single_dataset) * single_weight] * len(single_dataset))
|
1119 |
+
sampler_train = torch.utils.data.WeightedRandomSampler(
|
1120 |
+
weights=dataset_weights,
|
1121 |
+
num_samples=len(dataset_weights)
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
# DataLoaders creation:
|
1125 |
+
train_dataloader = torch.utils.data.DataLoader(
|
1126 |
+
train_dataset,
|
1127 |
+
sampler=sampler_train,
|
1128 |
+
shuffle=True if sampler_train is None else False,
|
1129 |
+
collate_fn=collate_fn,
|
1130 |
+
batch_size=args.train_batch_size,
|
1131 |
+
num_workers=args.dataloader_num_workers,
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
# 14. Embeddings for the UNet.
|
1135 |
+
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
|
1136 |
+
def compute_embeddings(prompt_batch, original_sizes, crop_coords, text_encoders, tokenizers, is_train=True):
|
1137 |
+
def compute_time_ids(original_size, crops_coords_top_left):
|
1138 |
+
target_size = (args.resolution, args.resolution)
|
1139 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
1140 |
+
add_time_ids = torch.tensor([add_time_ids])
|
1141 |
+
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
|
1142 |
+
return add_time_ids
|
1143 |
+
|
1144 |
+
prompt_embeds, pooled_prompt_embeds = encode_prompt(prompt_batch, text_encoders, tokenizers, is_train)
|
1145 |
+
add_text_embeds = pooled_prompt_embeds
|
1146 |
+
|
1147 |
+
add_time_ids = torch.cat([compute_time_ids(s, c) for s, c in zip(original_sizes, crop_coords)])
|
1148 |
+
|
1149 |
+
prompt_embeds = prompt_embeds.to(accelerator.device)
|
1150 |
+
add_text_embeds = add_text_embeds.to(accelerator.device)
|
1151 |
+
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1152 |
+
|
1153 |
+
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs}
|
1154 |
+
|
1155 |
+
text_encoders = [text_encoder_one, text_encoder_two]
|
1156 |
+
tokenizers = [tokenizer_one, tokenizer_two]
|
1157 |
+
|
1158 |
+
compute_embeddings_fn = functools.partial(compute_embeddings, text_encoders=text_encoders, tokenizers=tokenizers)
|
1159 |
+
|
1160 |
+
# Move pixels into latents.
|
1161 |
+
@torch.no_grad()
|
1162 |
+
def convert_to_latent(pixels):
|
1163 |
+
model_input = vae.encode(pixels).latent_dist.sample()
|
1164 |
+
model_input = model_input * vae.config.scaling_factor
|
1165 |
+
if args.pretrained_vae_model_name_or_path is None:
|
1166 |
+
model_input = model_input.to(weight_dtype)
|
1167 |
+
return model_input
|
1168 |
+
|
1169 |
+
# 15. LR Scheduler creation
|
1170 |
+
# Scheduler and math around the number of training steps.
|
1171 |
+
# Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
|
1172 |
+
num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes
|
1173 |
+
if args.max_train_steps is None:
|
1174 |
+
len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes)
|
1175 |
+
num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps)
|
1176 |
+
num_training_steps_for_scheduler = (
|
1177 |
+
args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes
|
1178 |
+
)
|
1179 |
+
else:
|
1180 |
+
num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes
|
1181 |
+
|
1182 |
+
if args.scale_lr:
|
1183 |
+
args.learning_rate = (
|
1184 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
1185 |
+
)
|
1186 |
+
|
1187 |
+
# Make sure the trainable params are in float32.
|
1188 |
+
if args.mixed_precision == "fp16":
|
1189 |
+
# only upcast trainable parameters (LoRA) into fp32
|
1190 |
+
cast_training_params(unet, dtype=torch.float32)
|
1191 |
+
|
1192 |
+
lr_scheduler = get_scheduler(
|
1193 |
+
args.lr_scheduler,
|
1194 |
+
optimizer=optimizer,
|
1195 |
+
num_warmup_steps=num_warmup_steps_for_scheduler,
|
1196 |
+
num_training_steps=num_training_steps_for_scheduler,
|
1197 |
+
)
|
1198 |
+
|
1199 |
+
# 16. Prepare for training
|
1200 |
+
# Prepare everything with our `accelerator`.
|
1201 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
1202 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
# 8. Handle mixed precision and device placement
|
1206 |
+
# For mixed precision training we cast all non-trainable weigths to half-precision
|
1207 |
+
# as these weights are only used for inference, keeping weights in full precision is not required.
|
1208 |
+
weight_dtype = torch.float32
|
1209 |
+
if accelerator.mixed_precision == "fp16":
|
1210 |
+
weight_dtype = torch.float16
|
1211 |
+
elif accelerator.mixed_precision == "bf16":
|
1212 |
+
weight_dtype = torch.bfloat16
|
1213 |
+
|
1214 |
+
# Move unet, vae and text_encoder to device and cast to weight_dtype
|
1215 |
+
# The VAE is in float32 to avoid NaN losses.
|
1216 |
+
if args.pretrained_vae_model_name_or_path is None:
|
1217 |
+
vae.to(accelerator.device, dtype=torch.float32)
|
1218 |
+
else:
|
1219 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
1220 |
+
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
|
1221 |
+
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
|
1222 |
+
image_encoder.to(accelerator.device, dtype=weight_dtype)
|
1223 |
+
for p in non_lora_params:
|
1224 |
+
p.data = p.data.to(dtype=weight_dtype)
|
1225 |
+
for p in lora_params:
|
1226 |
+
p.requires_grad_(True)
|
1227 |
+
unet.to(accelerator.device)
|
1228 |
+
|
1229 |
+
# Also move the alpha and sigma noise schedules to accelerator.device.
|
1230 |
+
alpha_schedule = alpha_schedule.to(accelerator.device)
|
1231 |
+
sigma_schedule = sigma_schedule.to(accelerator.device)
|
1232 |
+
solver = solver.to(accelerator.device)
|
1233 |
+
|
1234 |
+
# Instantiate Loss.
|
1235 |
+
losses_configs: LossesConfig = pyrallis.load(LossesConfig, open(args.losses_config_path, "r"))
|
1236 |
+
lcm_losses = list()
|
1237 |
+
for loss_config in losses_configs.lcm_losses:
|
1238 |
+
logger.info(f"Loading lcm loss: {loss_config.name}")
|
1239 |
+
loss = namedtuple("loss", ["loss", "weight"])
|
1240 |
+
loss_class = eval(loss_config.name)
|
1241 |
+
lcm_losses.append(loss(loss_class(
|
1242 |
+
visualize_every_k=loss_config.visualize_every_k,
|
1243 |
+
dtype=weight_dtype,
|
1244 |
+
accelerator=accelerator,
|
1245 |
+
dino_model=image_encoder,
|
1246 |
+
dino_preprocess=image_processor,
|
1247 |
+
huber_c=args.huber_c,
|
1248 |
+
**loss_config.init_params), weight=loss_config.weight))
|
1249 |
+
|
1250 |
+
# Final check.
|
1251 |
+
for n, p in unet.named_parameters():
|
1252 |
+
if p.requires_grad:
|
1253 |
+
assert "lora" in n, n
|
1254 |
+
assert p.dtype == torch.float32, n
|
1255 |
+
else:
|
1256 |
+
assert "lora" not in n, f"{n}"
|
1257 |
+
assert p.dtype == weight_dtype, n
|
1258 |
+
if args.sanity_check:
|
1259 |
+
if args.resume_from_checkpoint:
|
1260 |
+
if args.resume_from_checkpoint != "latest":
|
1261 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
1262 |
+
else:
|
1263 |
+
# Get the most recent checkpoint
|
1264 |
+
dirs = os.listdir(args.output_dir)
|
1265 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
1266 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
1267 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
1268 |
+
|
1269 |
+
if path is None:
|
1270 |
+
accelerator.print(
|
1271 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
1272 |
+
)
|
1273 |
+
args.resume_from_checkpoint = None
|
1274 |
+
initial_global_step = 0
|
1275 |
+
else:
|
1276 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
1277 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
1278 |
+
|
1279 |
+
# Check input data
|
1280 |
+
batch = next(iter(train_dataloader))
|
1281 |
+
lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"]))
|
1282 |
+
out_images = log_validation(unwrap_model(unet), vae, text_encoder_one, text_encoder_two, tokenizer_one, tokenizer_two,
|
1283 |
+
lcm_scheduler, image_encoder, image_processor,
|
1284 |
+
args, accelerator, weight_dtype, step=0, lq_img=lq_img, gt_img=gt_img, is_final_validation=False, log_local=True)
|
1285 |
+
exit()
|
1286 |
+
|
1287 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
1288 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
1289 |
+
if args.max_train_steps is None:
|
1290 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
1291 |
+
if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes:
|
1292 |
+
logger.warning(
|
1293 |
+
f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match "
|
1294 |
+
f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. "
|
1295 |
+
f"This inconsistency may result in the learning rate scheduler not functioning properly."
|
1296 |
+
)
|
1297 |
+
# Afterwards we recalculate our number of training epochs
|
1298 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
1299 |
+
|
1300 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
1301 |
+
# The trackers initializes automatically on the main process.
|
1302 |
+
if accelerator.is_main_process:
|
1303 |
+
tracker_config = dict(vars(args))
|
1304 |
+
|
1305 |
+
# tensorboard cannot handle list types for config
|
1306 |
+
tracker_config.pop("validation_prompt")
|
1307 |
+
tracker_config.pop("validation_image")
|
1308 |
+
|
1309 |
+
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
|
1310 |
+
|
1311 |
+
# 17. Train!
|
1312 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
1313 |
+
|
1314 |
+
logger.info("***** Running training *****")
|
1315 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
1316 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
1317 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
1318 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
1319 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
1320 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
1321 |
+
global_step = 0
|
1322 |
+
first_epoch = 0
|
1323 |
+
|
1324 |
+
# Potentially load in the weights and states from a previous save
|
1325 |
+
if args.resume_from_checkpoint:
|
1326 |
+
if args.resume_from_checkpoint != "latest":
|
1327 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
1328 |
+
else:
|
1329 |
+
# Get the most recent checkpoint
|
1330 |
+
dirs = os.listdir(args.output_dir)
|
1331 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
1332 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
1333 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
1334 |
+
|
1335 |
+
if path is None:
|
1336 |
+
accelerator.print(
|
1337 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
1338 |
+
)
|
1339 |
+
args.resume_from_checkpoint = None
|
1340 |
+
initial_global_step = 0
|
1341 |
+
else:
|
1342 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
1343 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
1344 |
+
global_step = int(path.split("-")[1])
|
1345 |
+
|
1346 |
+
initial_global_step = global_step
|
1347 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
1348 |
+
else:
|
1349 |
+
initial_global_step = 0
|
1350 |
+
|
1351 |
+
progress_bar = tqdm(
|
1352 |
+
range(0, args.max_train_steps),
|
1353 |
+
initial=initial_global_step,
|
1354 |
+
desc="Steps",
|
1355 |
+
# Only show the progress bar once on each machine.
|
1356 |
+
disable=not accelerator.is_local_main_process,
|
1357 |
+
)
|
1358 |
+
|
1359 |
+
unet.train()
|
1360 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
1361 |
+
for step, batch in enumerate(train_dataloader):
|
1362 |
+
with accelerator.accumulate(unet):
|
1363 |
+
total_loss = torch.tensor(0.0)
|
1364 |
+
bsz = batch["images"].shape[0]
|
1365 |
+
|
1366 |
+
# Drop conditions.
|
1367 |
+
rand_tensor = torch.rand(bsz)
|
1368 |
+
drop_image_idx = rand_tensor < args.image_drop_rate
|
1369 |
+
drop_text_idx = (rand_tensor >= args.image_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate)
|
1370 |
+
drop_both_idx = (rand_tensor >= args.image_drop_rate + args.text_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate + args.cond_drop_rate)
|
1371 |
+
drop_image_idx = drop_image_idx | drop_both_idx
|
1372 |
+
drop_text_idx = drop_text_idx | drop_both_idx
|
1373 |
+
|
1374 |
+
with torch.no_grad():
|
1375 |
+
lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"]))
|
1376 |
+
lq_pt = image_processor(
|
1377 |
+
images=lq_img*0.5+0.5,
|
1378 |
+
do_rescale=False, return_tensors="pt"
|
1379 |
+
).pixel_values
|
1380 |
+
image_embeds = prepare_training_image_embeds(
|
1381 |
+
image_encoder, image_processor,
|
1382 |
+
ip_adapter_image=lq_pt, ip_adapter_image_embeds=None,
|
1383 |
+
device=accelerator.device, drop_rate=args.image_drop_rate, output_hidden_state=args.image_encoder_hidden_feature,
|
1384 |
+
idx_to_replace=drop_image_idx
|
1385 |
+
)
|
1386 |
+
uncond_image_embeds = prepare_training_image_embeds(
|
1387 |
+
image_encoder, image_processor,
|
1388 |
+
ip_adapter_image=lq_pt, ip_adapter_image_embeds=None,
|
1389 |
+
device=accelerator.device, drop_rate=1.0, output_hidden_state=args.image_encoder_hidden_feature,
|
1390 |
+
idx_to_replace=torch.ones_like(drop_image_idx)
|
1391 |
+
)
|
1392 |
+
# 1. Load and process the image and text conditioning
|
1393 |
+
text, orig_size, crop_coords = (
|
1394 |
+
batch["text"],
|
1395 |
+
batch["original_sizes"],
|
1396 |
+
batch["crop_top_lefts"],
|
1397 |
+
)
|
1398 |
+
|
1399 |
+
encoded_text = compute_embeddings_fn(text, orig_size, crop_coords)
|
1400 |
+
uncond_encoded_text = compute_embeddings_fn([""]*len(text), orig_size, crop_coords)
|
1401 |
+
|
1402 |
+
# encode pixel values with batch size of at most args.vae_encode_batch_size
|
1403 |
+
gt_img = gt_img.to(dtype=vae.dtype)
|
1404 |
+
latents = []
|
1405 |
+
for i in range(0, gt_img.shape[0], args.vae_encode_batch_size):
|
1406 |
+
latents.append(vae.encode(gt_img[i : i + args.vae_encode_batch_size]).latent_dist.sample())
|
1407 |
+
latents = torch.cat(latents, dim=0)
|
1408 |
+
# latents = convert_to_latent(gt_img)
|
1409 |
+
|
1410 |
+
latents = latents * vae.config.scaling_factor
|
1411 |
+
if args.pretrained_vae_model_name_or_path is None:
|
1412 |
+
latents = latents.to(weight_dtype)
|
1413 |
+
|
1414 |
+
# 2. Sample a random timestep for each image t_n from the ODE solver timesteps without bias.
|
1415 |
+
# For the DDIM solver, the timestep schedule is [T - 1, T - k - 1, T - 2 * k - 1, ...]
|
1416 |
+
bsz = latents.shape[0]
|
1417 |
+
topk = noise_scheduler.config.num_train_timesteps // args.num_ddim_timesteps
|
1418 |
+
index = torch.randint(0, args.num_ddim_timesteps, (bsz,), device=latents.device).long()
|
1419 |
+
start_timesteps = solver.ddim_timesteps[index]
|
1420 |
+
timesteps = start_timesteps - topk
|
1421 |
+
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)
|
1422 |
+
|
1423 |
+
# 3. Get boundary scalings for start_timesteps and (end) timesteps.
|
1424 |
+
c_skip_start, c_out_start = scalings_for_boundary_conditions(
|
1425 |
+
start_timesteps, timestep_scaling=args.timestep_scaling_factor
|
1426 |
+
)
|
1427 |
+
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
|
1428 |
+
c_skip, c_out = scalings_for_boundary_conditions(
|
1429 |
+
timesteps, timestep_scaling=args.timestep_scaling_factor
|
1430 |
+
)
|
1431 |
+
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]
|
1432 |
+
|
1433 |
+
# 4. Sample noise from the prior and add it to the latents according to the noise magnitude at each
|
1434 |
+
# timestep (this is the forward diffusion process) [z_{t_{n + k}} in Algorithm 1]
|
1435 |
+
noise = torch.randn_like(latents)
|
1436 |
+
noisy_model_input = noise_scheduler.add_noise(latents, noise, start_timesteps)
|
1437 |
+
|
1438 |
+
# 5. Sample a random guidance scale w from U[w_min, w_max]
|
1439 |
+
# Note that for LCM-LoRA distillation it is not necessary to use a guidance scale embedding
|
1440 |
+
w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min
|
1441 |
+
w = w.reshape(bsz, 1, 1, 1)
|
1442 |
+
w = w.to(device=latents.device, dtype=latents.dtype)
|
1443 |
+
|
1444 |
+
# 6. Prepare prompt embeds and unet_added_conditions
|
1445 |
+
prompt_embeds = encoded_text.pop("prompt_embeds")
|
1446 |
+
encoded_text["image_embeds"] = image_embeds
|
1447 |
+
uncond_prompt_embeds = uncond_encoded_text.pop("prompt_embeds")
|
1448 |
+
uncond_encoded_text["image_embeds"] = image_embeds
|
1449 |
+
|
1450 |
+
# 7. Get online LCM prediction on z_{t_{n + k}} (noisy_model_input), w, c, t_{n + k} (start_timesteps)
|
1451 |
+
noise_pred = unet(
|
1452 |
+
noisy_model_input,
|
1453 |
+
start_timesteps,
|
1454 |
+
encoder_hidden_states=uncond_prompt_embeds,
|
1455 |
+
added_cond_kwargs=uncond_encoded_text,
|
1456 |
+
).sample
|
1457 |
+
pred_x_0 = get_predicted_original_sample(
|
1458 |
+
noise_pred,
|
1459 |
+
start_timesteps,
|
1460 |
+
noisy_model_input,
|
1461 |
+
noise_scheduler.config.prediction_type,
|
1462 |
+
alpha_schedule,
|
1463 |
+
sigma_schedule,
|
1464 |
+
)
|
1465 |
+
model_pred = c_skip_start * noisy_model_input + c_out_start * pred_x_0
|
1466 |
+
|
1467 |
+
# 8. Compute the conditional and unconditional teacher model predictions to get CFG estimates of the
|
1468 |
+
# predicted noise eps_0 and predicted original sample x_0, then run the ODE solver using these
|
1469 |
+
# estimates to predict the data point in the augmented PF-ODE trajectory corresponding to the next ODE
|
1470 |
+
# solver timestep.
|
1471 |
+
|
1472 |
+
# With the adapters disabled, the `unet` is the regular teacher model.
|
1473 |
+
accelerator.unwrap_model(unet).disable_adapters()
|
1474 |
+
with torch.no_grad():
|
1475 |
+
|
1476 |
+
# 1. Get teacher model prediction on noisy_model_input z_{t_{n + k}} and conditional embedding c
|
1477 |
+
teacher_added_cond = dict()
|
1478 |
+
for k,v in encoded_text.items():
|
1479 |
+
if isinstance(v, torch.Tensor):
|
1480 |
+
teacher_added_cond[k] = v.to(weight_dtype)
|
1481 |
+
else:
|
1482 |
+
teacher_image_embeds = []
|
1483 |
+
for img_emb in v:
|
1484 |
+
teacher_image_embeds.append(img_emb.to(weight_dtype))
|
1485 |
+
teacher_added_cond[k] = teacher_image_embeds
|
1486 |
+
cond_teacher_output = unet(
|
1487 |
+
noisy_model_input,
|
1488 |
+
start_timesteps,
|
1489 |
+
encoder_hidden_states=prompt_embeds,
|
1490 |
+
added_cond_kwargs=teacher_added_cond,
|
1491 |
+
).sample
|
1492 |
+
cond_pred_x0 = get_predicted_original_sample(
|
1493 |
+
cond_teacher_output,
|
1494 |
+
start_timesteps,
|
1495 |
+
noisy_model_input,
|
1496 |
+
noise_scheduler.config.prediction_type,
|
1497 |
+
alpha_schedule,
|
1498 |
+
sigma_schedule,
|
1499 |
+
)
|
1500 |
+
cond_pred_noise = get_predicted_noise(
|
1501 |
+
cond_teacher_output,
|
1502 |
+
start_timesteps,
|
1503 |
+
noisy_model_input,
|
1504 |
+
noise_scheduler.config.prediction_type,
|
1505 |
+
alpha_schedule,
|
1506 |
+
sigma_schedule,
|
1507 |
+
)
|
1508 |
+
|
1509 |
+
# 2. Get teacher model prediction on noisy_model_input z_{t_{n + k}} and unconditional embedding 0
|
1510 |
+
teacher_added_uncond = dict()
|
1511 |
+
uncond_encoded_text["image_embeds"] = uncond_image_embeds
|
1512 |
+
for k,v in uncond_encoded_text.items():
|
1513 |
+
if isinstance(v, torch.Tensor):
|
1514 |
+
teacher_added_uncond[k] = v.to(weight_dtype)
|
1515 |
+
else:
|
1516 |
+
teacher_uncond_image_embeds = []
|
1517 |
+
for img_emb in v:
|
1518 |
+
teacher_uncond_image_embeds.append(img_emb.to(weight_dtype))
|
1519 |
+
teacher_added_uncond[k] = teacher_uncond_image_embeds
|
1520 |
+
uncond_teacher_output = unet(
|
1521 |
+
noisy_model_input,
|
1522 |
+
start_timesteps,
|
1523 |
+
encoder_hidden_states=uncond_prompt_embeds.to(weight_dtype),
|
1524 |
+
added_cond_kwargs=teacher_added_uncond,
|
1525 |
+
).sample
|
1526 |
+
uncond_pred_x0 = get_predicted_original_sample(
|
1527 |
+
uncond_teacher_output,
|
1528 |
+
start_timesteps,
|
1529 |
+
noisy_model_input,
|
1530 |
+
noise_scheduler.config.prediction_type,
|
1531 |
+
alpha_schedule,
|
1532 |
+
sigma_schedule,
|
1533 |
+
)
|
1534 |
+
uncond_pred_noise = get_predicted_noise(
|
1535 |
+
uncond_teacher_output,
|
1536 |
+
start_timesteps,
|
1537 |
+
noisy_model_input,
|
1538 |
+
noise_scheduler.config.prediction_type,
|
1539 |
+
alpha_schedule,
|
1540 |
+
sigma_schedule,
|
1541 |
+
)
|
1542 |
+
|
1543 |
+
# 3. Calculate the CFG estimate of x_0 (pred_x0) and eps_0 (pred_noise)
|
1544 |
+
# Note that this uses the LCM paper's CFG formulation rather than the Imagen CFG formulation
|
1545 |
+
pred_x0 = cond_pred_x0 + w * (cond_pred_x0 - uncond_pred_x0)
|
1546 |
+
pred_noise = cond_pred_noise + w * (cond_pred_noise - uncond_pred_noise)
|
1547 |
+
# 4. Run one step of the ODE solver to estimate the next point x_prev on the
|
1548 |
+
# augmented PF-ODE trajectory (solving backward in time)
|
1549 |
+
# Note that the DDIM step depends on both the predicted x_0 and source noise eps_0.
|
1550 |
+
x_prev = solver.ddim_step(pred_x0, pred_noise, index).to(weight_dtype)
|
1551 |
+
|
1552 |
+
# re-enable unet adapters to turn the `unet` into a student unet.
|
1553 |
+
accelerator.unwrap_model(unet).enable_adapters()
|
1554 |
+
|
1555 |
+
# 9. Get target LCM prediction on x_prev, w, c, t_n (timesteps)
|
1556 |
+
# Note that we do not use a separate target network for LCM-LoRA distillation.
|
1557 |
+
with torch.no_grad():
|
1558 |
+
uncond_encoded_text["image_embeds"] = image_embeds
|
1559 |
+
target_added_cond = dict()
|
1560 |
+
for k,v in uncond_encoded_text.items():
|
1561 |
+
if isinstance(v, torch.Tensor):
|
1562 |
+
target_added_cond[k] = v.to(weight_dtype)
|
1563 |
+
else:
|
1564 |
+
target_image_embeds = []
|
1565 |
+
for img_emb in v:
|
1566 |
+
target_image_embeds.append(img_emb.to(weight_dtype))
|
1567 |
+
target_added_cond[k] = target_image_embeds
|
1568 |
+
target_noise_pred = unet(
|
1569 |
+
x_prev,
|
1570 |
+
timesteps,
|
1571 |
+
encoder_hidden_states=uncond_prompt_embeds.to(weight_dtype),
|
1572 |
+
added_cond_kwargs=target_added_cond,
|
1573 |
+
).sample
|
1574 |
+
pred_x_0 = get_predicted_original_sample(
|
1575 |
+
target_noise_pred,
|
1576 |
+
timesteps,
|
1577 |
+
x_prev,
|
1578 |
+
noise_scheduler.config.prediction_type,
|
1579 |
+
alpha_schedule,
|
1580 |
+
sigma_schedule,
|
1581 |
+
)
|
1582 |
+
target = c_skip * x_prev + c_out * pred_x_0
|
1583 |
+
|
1584 |
+
# 10. Calculate loss
|
1585 |
+
lcm_loss_arguments = {
|
1586 |
+
"target": target.float(),
|
1587 |
+
"predict": model_pred.float(),
|
1588 |
+
}
|
1589 |
+
loss_dict = dict()
|
1590 |
+
# total_loss = total_loss + torch.mean(
|
1591 |
+
# torch.sqrt((model_pred.float() - target.float()) ** 2 + args.huber_c**2) - args.huber_c
|
1592 |
+
# )
|
1593 |
+
# loss_dict["L2Loss"] = total_loss.item()
|
1594 |
+
for loss_config in lcm_losses:
|
1595 |
+
if loss_config.loss.__class__.__name__=="DINOLoss":
|
1596 |
+
with torch.no_grad():
|
1597 |
+
pixel_target = []
|
1598 |
+
latent_target = target.to(dtype=vae.dtype)
|
1599 |
+
for i in range(0, latent_target.shape[0], args.vae_encode_batch_size):
|
1600 |
+
pixel_target.append(
|
1601 |
+
vae.decode(
|
1602 |
+
latent_target[i : i + args.vae_encode_batch_size] / vae.config.scaling_factor,
|
1603 |
+
return_dict=False
|
1604 |
+
)[0]
|
1605 |
+
)
|
1606 |
+
pixel_target = torch.cat(pixel_target, dim=0)
|
1607 |
+
pixel_pred = []
|
1608 |
+
latent_pred = model_pred.to(dtype=vae.dtype)
|
1609 |
+
for i in range(0, latent_pred.shape[0], args.vae_encode_batch_size):
|
1610 |
+
pixel_pred.append(
|
1611 |
+
vae.decode(
|
1612 |
+
latent_pred[i : i + args.vae_encode_batch_size] / vae.config.scaling_factor,
|
1613 |
+
return_dict=False
|
1614 |
+
)[0]
|
1615 |
+
)
|
1616 |
+
pixel_pred = torch.cat(pixel_pred, dim=0)
|
1617 |
+
dino_loss_arguments = {
|
1618 |
+
"target": pixel_target,
|
1619 |
+
"predict": pixel_pred,
|
1620 |
+
}
|
1621 |
+
non_weighted_loss = loss_config.loss(**dino_loss_arguments, accelerator=accelerator)
|
1622 |
+
loss_dict[loss_config.loss.__class__.__name__] = non_weighted_loss.item()
|
1623 |
+
total_loss = total_loss + non_weighted_loss * loss_config.weight
|
1624 |
+
else:
|
1625 |
+
non_weighted_loss = loss_config.loss(**lcm_loss_arguments, accelerator=accelerator)
|
1626 |
+
total_loss = total_loss + non_weighted_loss * loss_config.weight
|
1627 |
+
loss_dict[loss_config.loss.__class__.__name__] = non_weighted_loss.item()
|
1628 |
+
|
1629 |
+
# 11. Backpropagate on the online student model (`unet`) (only LoRA)
|
1630 |
+
accelerator.backward(total_loss)
|
1631 |
+
if accelerator.sync_gradients:
|
1632 |
+
accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm)
|
1633 |
+
optimizer.step()
|
1634 |
+
lr_scheduler.step()
|
1635 |
+
optimizer.zero_grad(set_to_none=True)
|
1636 |
+
|
1637 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1638 |
+
if accelerator.sync_gradients:
|
1639 |
+
progress_bar.update(1)
|
1640 |
+
global_step += 1
|
1641 |
+
|
1642 |
+
if accelerator.is_main_process:
|
1643 |
+
if global_step % args.checkpointing_steps == 0:
|
1644 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
1645 |
+
if args.checkpoints_total_limit is not None:
|
1646 |
+
checkpoints = os.listdir(args.output_dir)
|
1647 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
1648 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
1649 |
+
|
1650 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
1651 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
1652 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
1653 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
1654 |
+
|
1655 |
+
logger.info(
|
1656 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
1657 |
+
)
|
1658 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
1659 |
+
|
1660 |
+
for removing_checkpoint in removing_checkpoints:
|
1661 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
1662 |
+
shutil.rmtree(removing_checkpoint)
|
1663 |
+
|
1664 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1665 |
+
accelerator.save_state(save_path)
|
1666 |
+
logger.info(f"Saved state to {save_path}")
|
1667 |
+
|
1668 |
+
if global_step % args.validation_steps == 0:
|
1669 |
+
out_images = log_validation(unwrap_model(unet), vae, text_encoder_one, text_encoder_two, tokenizer_one, tokenizer_two,
|
1670 |
+
lcm_scheduler, image_encoder, image_processor,
|
1671 |
+
args, accelerator, weight_dtype, global_step, lq_img, gt_img, is_final_validation=False, log_local=False)
|
1672 |
+
|
1673 |
+
logs = dict()
|
1674 |
+
# logs.update({"loss": loss.detach().item()})
|
1675 |
+
logs.update(loss_dict)
|
1676 |
+
logs.update({"lr": lr_scheduler.get_last_lr()[0]})
|
1677 |
+
progress_bar.set_postfix(**logs)
|
1678 |
+
accelerator.log(logs, step=global_step)
|
1679 |
+
|
1680 |
+
if global_step >= args.max_train_steps:
|
1681 |
+
break
|
1682 |
+
|
1683 |
+
# Create the pipeline using using the trained modules and save it.
|
1684 |
+
accelerator.wait_for_everyone()
|
1685 |
+
if accelerator.is_main_process:
|
1686 |
+
unet = accelerator.unwrap_model(unet)
|
1687 |
+
unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet))
|
1688 |
+
StableDiffusionXLPipeline.save_lora_weights(args.output_dir, unet_lora_layers=unet_lora_state_dict)
|
1689 |
+
|
1690 |
+
if args.push_to_hub:
|
1691 |
+
upload_folder(
|
1692 |
+
repo_id=repo_id,
|
1693 |
+
folder_path=args.output_dir,
|
1694 |
+
commit_message="End of training",
|
1695 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1696 |
+
)
|
1697 |
+
|
1698 |
+
del unet
|
1699 |
+
torch.cuda.empty_cache()
|
1700 |
+
|
1701 |
+
# Final inference.
|
1702 |
+
if args.validation_steps is not None:
|
1703 |
+
log_validation(unwrap_model(unet), vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2,
|
1704 |
+
lcm_scheduler, image_encoder=None, image_processor=None,
|
1705 |
+
args=args, accelerator=accelerator, weight_dtype=weight_dtype, step=0, is_final_validation=False, log_local=True)
|
1706 |
+
|
1707 |
+
accelerator.end_training()
|
1708 |
+
|
1709 |
+
|
1710 |
+
if __name__ == "__main__":
|
1711 |
+
args = parse_args()
|
1712 |
+
main(args)
|