Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create train_utils.py
Browse files- utils/train_utils.py +360 -0
utils/train_utils.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import contextlib
|
3 |
+
import time
|
4 |
+
import gc
|
5 |
+
import logging
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
import random
|
9 |
+
import jsonlines
|
10 |
+
import functools
|
11 |
+
import shutil
|
12 |
+
import pyrallis
|
13 |
+
import itertools
|
14 |
+
from pathlib import Path
|
15 |
+
from collections import namedtuple, OrderedDict
|
16 |
+
|
17 |
+
import accelerate
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
import transformers
|
23 |
+
from accelerate import Accelerator
|
24 |
+
from accelerate.logging import get_logger
|
25 |
+
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
|
26 |
+
from datasets import load_dataset
|
27 |
+
from packaging import version
|
28 |
+
from PIL import Image
|
29 |
+
from losses.losses import *
|
30 |
+
from torchvision import transforms
|
31 |
+
from torchvision.transforms.functional import crop
|
32 |
+
from tqdm.auto import tqdm
|
33 |
+
|
34 |
+
|
35 |
+
def import_model_class_from_model_name_or_path(
|
36 |
+
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
37 |
+
):
|
38 |
+
from transformers import PretrainedConfig
|
39 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
40 |
+
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
41 |
+
)
|
42 |
+
model_class = text_encoder_config.architectures[0]
|
43 |
+
|
44 |
+
if model_class == "CLIPTextModel":
|
45 |
+
from transformers import CLIPTextModel
|
46 |
+
|
47 |
+
return CLIPTextModel
|
48 |
+
elif model_class == "CLIPTextModelWithProjection":
|
49 |
+
from transformers import CLIPTextModelWithProjection
|
50 |
+
|
51 |
+
return CLIPTextModelWithProjection
|
52 |
+
else:
|
53 |
+
raise ValueError(f"{model_class} is not supported.")
|
54 |
+
|
55 |
+
def get_train_dataset(dataset_name, dataset_dir, args, accelerator):
|
56 |
+
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
57 |
+
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
|
58 |
+
|
59 |
+
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
60 |
+
# download the dataset.
|
61 |
+
dataset = load_dataset(
|
62 |
+
dataset_name,
|
63 |
+
data_dir=dataset_dir,
|
64 |
+
cache_dir=os.path.join(dataset_dir, ".cache"),
|
65 |
+
num_proc=4,
|
66 |
+
split="train",
|
67 |
+
)
|
68 |
+
|
69 |
+
# Preprocessing the datasets.
|
70 |
+
# We need to tokenize inputs and targets.
|
71 |
+
column_names = dataset.column_names
|
72 |
+
|
73 |
+
# 6. Get the column names for input/target.
|
74 |
+
if args.image_column is None:
|
75 |
+
args.image_column = column_names[0]
|
76 |
+
logger.info(f"image column defaulting to {column_names[0]}")
|
77 |
+
else:
|
78 |
+
image_column = args.image_column
|
79 |
+
if image_column not in column_names:
|
80 |
+
logger.warning(f"dataset {dataset_name} has no column {image_column}")
|
81 |
+
|
82 |
+
if args.caption_column is None:
|
83 |
+
args.caption_column = column_names[1]
|
84 |
+
logger.info(f"caption column defaulting to {column_names[1]}")
|
85 |
+
else:
|
86 |
+
caption_column = args.caption_column
|
87 |
+
if caption_column not in column_names:
|
88 |
+
logger.warning(f"dataset {dataset_name} has no column {caption_column}")
|
89 |
+
|
90 |
+
if args.conditioning_image_column is None:
|
91 |
+
args.conditioning_image_column = column_names[2]
|
92 |
+
logger.info(f"conditioning image column defaulting to {column_names[2]}")
|
93 |
+
else:
|
94 |
+
conditioning_image_column = args.conditioning_image_column
|
95 |
+
if conditioning_image_column not in column_names:
|
96 |
+
logger.warning(f"dataset {dataset_name} has no column {conditioning_image_column}")
|
97 |
+
|
98 |
+
with accelerator.main_process_first():
|
99 |
+
train_dataset = dataset.shuffle(seed=args.seed)
|
100 |
+
if args.max_train_samples is not None:
|
101 |
+
train_dataset = train_dataset.select(range(args.max_train_samples))
|
102 |
+
return train_dataset
|
103 |
+
|
104 |
+
def prepare_train_dataset(dataset, accelerator, deg_pipeline, centralize=False):
|
105 |
+
|
106 |
+
# Data augmentations.
|
107 |
+
hflip = deg_pipeline.augment_opt['use_hflip'] and random.random() < 0.5
|
108 |
+
vflip = deg_pipeline.augment_opt['use_rot'] and random.random() < 0.5
|
109 |
+
rot90 = deg_pipeline.augment_opt['use_rot'] and random.random() < 0.5
|
110 |
+
augment_transforms = []
|
111 |
+
if hflip:
|
112 |
+
augment_transforms.append(transforms.RandomHorizontalFlip(p=1.0))
|
113 |
+
if vflip:
|
114 |
+
augment_transforms.append(transforms.RandomVerticalFlip(p=1.0))
|
115 |
+
if rot90:
|
116 |
+
# FIXME
|
117 |
+
augment_transforms.append(transforms.RandomRotation(degrees=(90,90)))
|
118 |
+
torch_transforms=[transforms.ToTensor()]
|
119 |
+
if centralize:
|
120 |
+
# to [-1, 1]
|
121 |
+
torch_transforms.append(transforms.Normalize([0.5], [0.5]))
|
122 |
+
|
123 |
+
training_size = deg_pipeline.degrade_opt['gt_size']
|
124 |
+
image_transforms = transforms.Compose(augment_transforms)
|
125 |
+
train_transforms = transforms.Compose(torch_transforms)
|
126 |
+
train_resize = transforms.Resize(training_size, interpolation=transforms.InterpolationMode.BILINEAR)
|
127 |
+
train_crop = transforms.RandomCrop(training_size)
|
128 |
+
|
129 |
+
def preprocess_train(examples):
|
130 |
+
raw_images = []
|
131 |
+
for img_data in examples[args.image_column]:
|
132 |
+
raw_images.append(Image.open(img_data).convert("RGB"))
|
133 |
+
|
134 |
+
# Image stack.
|
135 |
+
images = []
|
136 |
+
original_sizes = []
|
137 |
+
crop_top_lefts = []
|
138 |
+
# Degradation kernels stack.
|
139 |
+
kernel = []
|
140 |
+
kernel2 = []
|
141 |
+
sinc_kernel = []
|
142 |
+
|
143 |
+
for raw_image in raw_images:
|
144 |
+
raw_image = image_transforms(raw_image)
|
145 |
+
original_sizes.append((raw_image.height, raw_image.width))
|
146 |
+
|
147 |
+
# Resize smaller edge.
|
148 |
+
raw_image = train_resize(raw_image)
|
149 |
+
# Crop to training size.
|
150 |
+
y1, x1, h, w = train_crop.get_params(raw_image, (training_size, training_size))
|
151 |
+
raw_image = crop(raw_image, y1, x1, h, w)
|
152 |
+
crop_top_left = (y1, x1)
|
153 |
+
crop_top_lefts.append(crop_top_left)
|
154 |
+
image = train_transforms(raw_image)
|
155 |
+
|
156 |
+
images.append(image)
|
157 |
+
k, k2, sk = deg_pipeline.get_kernel()
|
158 |
+
kernel.append(k)
|
159 |
+
kernel2.append(k2)
|
160 |
+
sinc_kernel.append(sk)
|
161 |
+
|
162 |
+
examples["images"] = images
|
163 |
+
examples["original_sizes"] = original_sizes
|
164 |
+
examples["crop_top_lefts"] = crop_top_lefts
|
165 |
+
examples["kernel"] = kernel
|
166 |
+
examples["kernel2"] = kernel2
|
167 |
+
examples["sinc_kernel"] = sinc_kernel
|
168 |
+
|
169 |
+
return examples
|
170 |
+
|
171 |
+
with accelerator.main_process_first():
|
172 |
+
dataset = dataset.with_transform(preprocess_train)
|
173 |
+
|
174 |
+
return dataset
|
175 |
+
|
176 |
+
def collate_fn(examples):
|
177 |
+
images = torch.stack([example["images"] for example in examples])
|
178 |
+
images = images.to(memory_format=torch.contiguous_format).float()
|
179 |
+
kernel = torch.stack([example["kernel"] for example in examples])
|
180 |
+
kernel = kernel.to(memory_format=torch.contiguous_format).float()
|
181 |
+
kernel2 = torch.stack([example["kernel2"] for example in examples])
|
182 |
+
kernel2 = kernel2.to(memory_format=torch.contiguous_format).float()
|
183 |
+
sinc_kernel = torch.stack([example["sinc_kernel"] for example in examples])
|
184 |
+
sinc_kernel = sinc_kernel.to(memory_format=torch.contiguous_format).float()
|
185 |
+
original_sizes = [example["original_sizes"] for example in examples]
|
186 |
+
crop_top_lefts = [example["crop_top_lefts"] for example in examples]
|
187 |
+
|
188 |
+
prompts = []
|
189 |
+
for example in examples:
|
190 |
+
prompts.append(example[args.caption_column]) if args.caption_column in example else prompts.append("")
|
191 |
+
|
192 |
+
return {
|
193 |
+
"images": images,
|
194 |
+
"text": prompts,
|
195 |
+
"kernel": kernel,
|
196 |
+
"kernel2": kernel2,
|
197 |
+
"sinc_kernel": sinc_kernel,
|
198 |
+
"original_sizes": original_sizes,
|
199 |
+
"crop_top_lefts": crop_top_lefts,
|
200 |
+
}
|
201 |
+
|
202 |
+
def encode_prompt(prompt_batch, text_encoders, tokenizers, is_train=True):
|
203 |
+
prompt_embeds_list = []
|
204 |
+
|
205 |
+
captions = []
|
206 |
+
for caption in prompt_batch:
|
207 |
+
if isinstance(caption, str):
|
208 |
+
captions.append(caption)
|
209 |
+
elif isinstance(caption, (list, np.ndarray)):
|
210 |
+
# take a random caption if there are multiple
|
211 |
+
captions.append(random.choice(caption) if is_train else caption[0])
|
212 |
+
|
213 |
+
with torch.no_grad():
|
214 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
215 |
+
text_inputs = tokenizer(
|
216 |
+
captions,
|
217 |
+
padding="max_length",
|
218 |
+
max_length=tokenizer.model_max_length,
|
219 |
+
truncation=True,
|
220 |
+
return_tensors="pt",
|
221 |
+
)
|
222 |
+
text_input_ids = text_inputs.input_ids
|
223 |
+
prompt_embeds = text_encoder(
|
224 |
+
text_input_ids.to(text_encoder.device),
|
225 |
+
output_hidden_states=True,
|
226 |
+
)
|
227 |
+
|
228 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
229 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
230 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
231 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
232 |
+
prompt_embeds_list.append(prompt_embeds)
|
233 |
+
|
234 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
235 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
236 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
237 |
+
return prompt_embeds, pooled_prompt_embeds
|
238 |
+
|
239 |
+
def importance_sampling_fn(t, max_t, alpha):
|
240 |
+
"""Importance Sampling Function f(t)"""
|
241 |
+
return 1 / max_t * (1 - alpha * np.cos(np.pi * t / max_t))
|
242 |
+
|
243 |
+
def extract_into_tensor(a, t, x_shape):
|
244 |
+
b, *_ = t.shape
|
245 |
+
out = a.gather(-1, t)
|
246 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
247 |
+
|
248 |
+
def tensor_to_pil(images):
|
249 |
+
"""
|
250 |
+
Convert image tensor or a batch of image tensors to PIL image(s).
|
251 |
+
"""
|
252 |
+
images = (images + 1) / 2
|
253 |
+
images_np = images.detach().cpu().numpy()
|
254 |
+
if images_np.ndim == 4:
|
255 |
+
images_np = np.transpose(images_np, (0, 2, 3, 1))
|
256 |
+
elif images_np.ndim == 3:
|
257 |
+
images_np = np.transpose(images_np, (1, 2, 0))
|
258 |
+
images_np = images_np[None, ...]
|
259 |
+
images_np = (images_np * 255).round().astype("uint8")
|
260 |
+
if images_np.shape[-1] == 1:
|
261 |
+
# special case for grayscale (single channel) images
|
262 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images_np]
|
263 |
+
else:
|
264 |
+
pil_images = [Image.fromarray(image[:, :, :3]) for image in images_np]
|
265 |
+
|
266 |
+
return pil_images
|
267 |
+
|
268 |
+
def save_np_to_image(img_np, save_dir):
|
269 |
+
img_np = np.transpose(img_np, (0, 2, 3, 1))
|
270 |
+
img_np = (img_np * 255).astype(np.uint8)
|
271 |
+
img_np = Image.fromarray(img_np[0])
|
272 |
+
img_np.save(save_dir)
|
273 |
+
|
274 |
+
|
275 |
+
def seperate_SFT_params_from_unet(unet):
|
276 |
+
params = []
|
277 |
+
non_params = []
|
278 |
+
for name, param in unet.named_parameters():
|
279 |
+
if "SFT" in name:
|
280 |
+
params.append(param)
|
281 |
+
else:
|
282 |
+
non_params.append(param)
|
283 |
+
return params, non_params
|
284 |
+
|
285 |
+
|
286 |
+
def seperate_lora_params_from_unet(unet):
|
287 |
+
keys = []
|
288 |
+
frozen_keys = []
|
289 |
+
for name, param in unet.named_parameters():
|
290 |
+
if "lora" in name:
|
291 |
+
keys.append(param)
|
292 |
+
else:
|
293 |
+
frozen_keys.append(param)
|
294 |
+
return keys, frozen_keys
|
295 |
+
|
296 |
+
|
297 |
+
def seperate_ip_params_from_unet(unet):
|
298 |
+
ip_params = []
|
299 |
+
non_ip_params = []
|
300 |
+
for name, param in unet.named_parameters():
|
301 |
+
if "encoder_hid_proj." in name or "_ip." in name:
|
302 |
+
ip_params.append(param)
|
303 |
+
elif "attn" in name and "processor" in name:
|
304 |
+
if "ip" in name or "ln" in name:
|
305 |
+
ip_params.append(param)
|
306 |
+
else:
|
307 |
+
non_ip_params.append(param)
|
308 |
+
return ip_params, non_ip_params
|
309 |
+
|
310 |
+
|
311 |
+
def seperate_ref_params_from_unet(unet):
|
312 |
+
ip_params = []
|
313 |
+
non_ip_params = []
|
314 |
+
for name, param in unet.named_parameters():
|
315 |
+
if "encoder_hid_proj." in name or "_ip." in name:
|
316 |
+
ip_params.append(param)
|
317 |
+
elif "attn" in name and "processor" in name:
|
318 |
+
if "ip" in name or "ln" in name:
|
319 |
+
ip_params.append(param)
|
320 |
+
elif "extract" in name:
|
321 |
+
ip_params.append(param)
|
322 |
+
else:
|
323 |
+
non_ip_params.append(param)
|
324 |
+
return ip_params, non_ip_params
|
325 |
+
|
326 |
+
|
327 |
+
def seperate_ip_modules_from_unet(unet):
|
328 |
+
ip_modules = []
|
329 |
+
non_ip_modules = []
|
330 |
+
for name, module in unet.named_modules():
|
331 |
+
if "encoder_hid_proj" in name or "attn2.processor" in name:
|
332 |
+
ip_modules.append(module)
|
333 |
+
else:
|
334 |
+
non_ip_modules.append(module)
|
335 |
+
return ip_modules, non_ip_modules
|
336 |
+
|
337 |
+
|
338 |
+
def seperate_SFT_keys_from_unet(unet):
|
339 |
+
keys = []
|
340 |
+
non_keys = []
|
341 |
+
for name, param in unet.named_parameters():
|
342 |
+
if "SFT" in name:
|
343 |
+
keys.append(name)
|
344 |
+
else:
|
345 |
+
non_keys.append(name)
|
346 |
+
return keys, non_keys
|
347 |
+
|
348 |
+
|
349 |
+
def seperate_ip_keys_from_unet(unet):
|
350 |
+
keys = []
|
351 |
+
non_keys = []
|
352 |
+
for name, param in unet.named_parameters():
|
353 |
+
if "encoder_hid_proj." in name or "_ip." in name:
|
354 |
+
keys.append(name)
|
355 |
+
elif "attn" in name and "processor" in name:
|
356 |
+
if "ip" in name or "ln" in name:
|
357 |
+
keys.append(name)
|
358 |
+
else:
|
359 |
+
non_keys.append(name)
|
360 |
+
return keys, non_keys
|